Kholoud M. Ibrahim, Doaa M. Elsisi, Yousry A. Ammar, Fivian F. M. Araki, Jehane A. A. Micky
{"title":"作为潜在抗癌剂的磺酰肼衍生物:合成、体外和硅学研究。","authors":"Kholoud M. Ibrahim, Doaa M. Elsisi, Yousry A. Ammar, Fivian F. M. Araki, Jehane A. A. Micky","doi":"10.1007/s10930-024-10232-x","DOIUrl":null,"url":null,"abstract":"<div><p>The synthesis of new agents for cancer treatment persists due to its global lethality. A series of thirteen derivatives, namely salicylic acid-5-sulfohydrazide (SA-SH) analogs, were designed and synthesized from 5-(chlorosulfonyl)-2-hydroxybenzoic acid via nucleophilic substitution reaction with different acid hydrazides, thiocarbohydrazide & thiosemicarbazide scaffolds. Confirmation of the designed derivative’s structures employed various spectroscopic techniques (FT-IR and NMR) and elemental analysis. The newly synthesized synthons were evaluated for cytotoxic activity against HepG-2 and HCT-116 cell lines in comparison to Doxorubicin. Notably, SA-SH derivatives (5, 7, 8a, 8b and 11) exhibited significantly higher efficacy against HepG-2 and HCT-116 cell lines than other analogs. Furthermore, compound (8a) demonstrated a superior activity against HepG-2 cell lines with IC<sub>50</sub> values of 3.99 ± 0.2 μM than the reference drug, Doxorubicin, (IC<sub>50</sub> HepG-2 = 4.50 ± 0.2 µM). The molecular docking simulation of the most active SA-SH derivatives and the reference drug doxorubicin into the active site of FGFR4 (fibroblast growth factor receptor, the predominant isoform expressed in human hepatocytes) (PDB ID: 6V9C) proved the usefulness of hybridizing salicylic scaffold with SO<sub>2</sub> and hydrazide moieties as a promising approach in designing new anticancer agents. Finally, ADME and drug-likeness features of the most active compounds compared to positive controls were investigated to increase the success possibilities in clinical trials and they were found to be promising candidates for further investigation and development as drugs.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":793,"journal":{"name":"The Protein Journal","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sulfonylhydrazide Derivatives as Potential Anti-cancer Agents: Synthesis, In Vitro and In Silico Studies\",\"authors\":\"Kholoud M. Ibrahim, Doaa M. Elsisi, Yousry A. Ammar, Fivian F. M. Araki, Jehane A. A. Micky\",\"doi\":\"10.1007/s10930-024-10232-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The synthesis of new agents for cancer treatment persists due to its global lethality. A series of thirteen derivatives, namely salicylic acid-5-sulfohydrazide (SA-SH) analogs, were designed and synthesized from 5-(chlorosulfonyl)-2-hydroxybenzoic acid via nucleophilic substitution reaction with different acid hydrazides, thiocarbohydrazide & thiosemicarbazide scaffolds. Confirmation of the designed derivative’s structures employed various spectroscopic techniques (FT-IR and NMR) and elemental analysis. The newly synthesized synthons were evaluated for cytotoxic activity against HepG-2 and HCT-116 cell lines in comparison to Doxorubicin. Notably, SA-SH derivatives (5, 7, 8a, 8b and 11) exhibited significantly higher efficacy against HepG-2 and HCT-116 cell lines than other analogs. Furthermore, compound (8a) demonstrated a superior activity against HepG-2 cell lines with IC<sub>50</sub> values of 3.99 ± 0.2 μM than the reference drug, Doxorubicin, (IC<sub>50</sub> HepG-2 = 4.50 ± 0.2 µM). The molecular docking simulation of the most active SA-SH derivatives and the reference drug doxorubicin into the active site of FGFR4 (fibroblast growth factor receptor, the predominant isoform expressed in human hepatocytes) (PDB ID: 6V9C) proved the usefulness of hybridizing salicylic scaffold with SO<sub>2</sub> and hydrazide moieties as a promising approach in designing new anticancer agents. Finally, ADME and drug-likeness features of the most active compounds compared to positive controls were investigated to increase the success possibilities in clinical trials and they were found to be promising candidates for further investigation and development as drugs.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":793,\"journal\":{\"name\":\"The Protein Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Protein Journal\",\"FirstCategoryId\":\"2\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10930-024-10232-x\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Protein Journal","FirstCategoryId":"2","ListUrlMain":"https://link.springer.com/article/10.1007/s10930-024-10232-x","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Sulfonylhydrazide Derivatives as Potential Anti-cancer Agents: Synthesis, In Vitro and In Silico Studies
The synthesis of new agents for cancer treatment persists due to its global lethality. A series of thirteen derivatives, namely salicylic acid-5-sulfohydrazide (SA-SH) analogs, were designed and synthesized from 5-(chlorosulfonyl)-2-hydroxybenzoic acid via nucleophilic substitution reaction with different acid hydrazides, thiocarbohydrazide & thiosemicarbazide scaffolds. Confirmation of the designed derivative’s structures employed various spectroscopic techniques (FT-IR and NMR) and elemental analysis. The newly synthesized synthons were evaluated for cytotoxic activity against HepG-2 and HCT-116 cell lines in comparison to Doxorubicin. Notably, SA-SH derivatives (5, 7, 8a, 8b and 11) exhibited significantly higher efficacy against HepG-2 and HCT-116 cell lines than other analogs. Furthermore, compound (8a) demonstrated a superior activity against HepG-2 cell lines with IC50 values of 3.99 ± 0.2 μM than the reference drug, Doxorubicin, (IC50 HepG-2 = 4.50 ± 0.2 µM). The molecular docking simulation of the most active SA-SH derivatives and the reference drug doxorubicin into the active site of FGFR4 (fibroblast growth factor receptor, the predominant isoform expressed in human hepatocytes) (PDB ID: 6V9C) proved the usefulness of hybridizing salicylic scaffold with SO2 and hydrazide moieties as a promising approach in designing new anticancer agents. Finally, ADME and drug-likeness features of the most active compounds compared to positive controls were investigated to increase the success possibilities in clinical trials and they were found to be promising candidates for further investigation and development as drugs.
期刊介绍:
The Protein Journal (formerly the Journal of Protein Chemistry) publishes original research work on all aspects of proteins and peptides. These include studies concerned with covalent or three-dimensional structure determination (X-ray, NMR, cryoEM, EPR/ESR, optical methods, etc.), computational aspects of protein structure and function, protein folding and misfolding, assembly, genetics, evolution, proteomics, molecular biology, protein engineering, protein nanotechnology, protein purification and analysis and peptide synthesis, as well as the elucidation and interpretation of the molecular bases of biological activities of proteins and peptides. We accept original research papers, reviews, mini-reviews, hypotheses, opinion papers, and letters to the editor.