Junnian Wu, Ziwei Lv, Zongqian Zheng, Yupeng Fu, Jiang Li
{"title":"多层复合土壤电动力除铬过程中铬的转化和辅助提取。","authors":"Junnian Wu, Ziwei Lv, Zongqian Zheng, Yupeng Fu, Jiang Li","doi":"10.1007/s10653-024-02242-6","DOIUrl":null,"url":null,"abstract":"<p><p>Multilayer composite soil chamber was proposed to extract the Cr of contaminated site soil and insight into transformation of Cr fractionation associated with valence states. The variations of current, soil pH and moisture content were explored, as well as the migration of Cr fractionation and redistribution of Cr. Results indicated that duration of half peak current could be used to adjust treatment time and it varied among different composite ways. Moreover, extraction efficiency of Cr in soil near cathode was relatively higher and reached 60% when citric acid was used. Citric acid could promote the transformation between different Cr fractionations or different valence states. It could also improve the desorption of Cr, and could prevent excessive fluctuations of moisture content at the same time. Cr redistributed acrossed the soil chamber after extraction. When deionized water was used, Cr(VI) significantly migrated toward anode mainly in the form of exchangeable fractionation (EXC) while Fe-Mn oxides fractionation (Fe-Mn) which may be in the form of cationic Cr(III) hydroxides migrated toward cathode. When using citric acid, fractionations that were difficult to migrate of Cr, especially for Fe-Mn in site soils could be activated and became EXC and carbonate fractionation (CAR), then migrated to the anode or cathode. The migration of exchangeable Cr(III) was dramatically enhanced. But the use of citric acid could cause Cr(VI) transformation to Cr(III) near anode. In addition, during the migration process, EXC could go back to Fe-Mn again or transform to residue fractionation (RES).</p>","PeriodicalId":11759,"journal":{"name":"Environmental Geochemistry and Health","volume":"46 11","pages":"450"},"PeriodicalIF":3.2000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A transformation and auxiliary extraction of Cr during electrokinetic removal of Cr-contaminated multilayer composite soil chamber.\",\"authors\":\"Junnian Wu, Ziwei Lv, Zongqian Zheng, Yupeng Fu, Jiang Li\",\"doi\":\"10.1007/s10653-024-02242-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Multilayer composite soil chamber was proposed to extract the Cr of contaminated site soil and insight into transformation of Cr fractionation associated with valence states. The variations of current, soil pH and moisture content were explored, as well as the migration of Cr fractionation and redistribution of Cr. Results indicated that duration of half peak current could be used to adjust treatment time and it varied among different composite ways. Moreover, extraction efficiency of Cr in soil near cathode was relatively higher and reached 60% when citric acid was used. Citric acid could promote the transformation between different Cr fractionations or different valence states. It could also improve the desorption of Cr, and could prevent excessive fluctuations of moisture content at the same time. Cr redistributed acrossed the soil chamber after extraction. When deionized water was used, Cr(VI) significantly migrated toward anode mainly in the form of exchangeable fractionation (EXC) while Fe-Mn oxides fractionation (Fe-Mn) which may be in the form of cationic Cr(III) hydroxides migrated toward cathode. When using citric acid, fractionations that were difficult to migrate of Cr, especially for Fe-Mn in site soils could be activated and became EXC and carbonate fractionation (CAR), then migrated to the anode or cathode. The migration of exchangeable Cr(III) was dramatically enhanced. But the use of citric acid could cause Cr(VI) transformation to Cr(III) near anode. In addition, during the migration process, EXC could go back to Fe-Mn again or transform to residue fractionation (RES).</p>\",\"PeriodicalId\":11759,\"journal\":{\"name\":\"Environmental Geochemistry and Health\",\"volume\":\"46 11\",\"pages\":\"450\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Geochemistry and Health\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s10653-024-02242-6\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Geochemistry and Health","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10653-024-02242-6","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
A transformation and auxiliary extraction of Cr during electrokinetic removal of Cr-contaminated multilayer composite soil chamber.
Multilayer composite soil chamber was proposed to extract the Cr of contaminated site soil and insight into transformation of Cr fractionation associated with valence states. The variations of current, soil pH and moisture content were explored, as well as the migration of Cr fractionation and redistribution of Cr. Results indicated that duration of half peak current could be used to adjust treatment time and it varied among different composite ways. Moreover, extraction efficiency of Cr in soil near cathode was relatively higher and reached 60% when citric acid was used. Citric acid could promote the transformation between different Cr fractionations or different valence states. It could also improve the desorption of Cr, and could prevent excessive fluctuations of moisture content at the same time. Cr redistributed acrossed the soil chamber after extraction. When deionized water was used, Cr(VI) significantly migrated toward anode mainly in the form of exchangeable fractionation (EXC) while Fe-Mn oxides fractionation (Fe-Mn) which may be in the form of cationic Cr(III) hydroxides migrated toward cathode. When using citric acid, fractionations that were difficult to migrate of Cr, especially for Fe-Mn in site soils could be activated and became EXC and carbonate fractionation (CAR), then migrated to the anode or cathode. The migration of exchangeable Cr(III) was dramatically enhanced. But the use of citric acid could cause Cr(VI) transformation to Cr(III) near anode. In addition, during the migration process, EXC could go back to Fe-Mn again or transform to residue fractionation (RES).
期刊介绍:
Environmental Geochemistry and Health publishes original research papers and review papers across the broad field of environmental geochemistry. Environmental geochemistry and health establishes and explains links between the natural or disturbed chemical composition of the earth’s surface and the health of plants, animals and people.
Beneficial elements regulate or promote enzymatic and hormonal activity whereas other elements may be toxic. Bedrock geochemistry controls the composition of soil and hence that of water and vegetation. Environmental issues, such as pollution, arising from the extraction and use of mineral resources, are discussed. The effects of contaminants introduced into the earth’s geochemical systems are examined. Geochemical surveys of soil, water and plants show how major and trace elements are distributed geographically. Associated epidemiological studies reveal the possibility of causal links between the natural or disturbed geochemical environment and disease. Experimental research illuminates the nature or consequences of natural or disturbed geochemical processes.
The journal particularly welcomes novel research linking environmental geochemistry and health issues on such topics as: heavy metals (including mercury), persistent organic pollutants (POPs), and mixed chemicals emitted through human activities, such as uncontrolled recycling of electronic-waste; waste recycling; surface-atmospheric interaction processes (natural and anthropogenic emissions, vertical transport, deposition, and physical-chemical interaction) of gases and aerosols; phytoremediation/restoration of contaminated sites; food contamination and safety; environmental effects of medicines; effects and toxicity of mixed pollutants; speciation of heavy metals/metalloids; effects of mining; disturbed geochemistry from human behavior, natural or man-made hazards; particle and nanoparticle toxicology; risk and the vulnerability of populations, etc.