Jianglong Ling, Ye Ruan, Congchao Xu, Di Liu, Bowen Shi, Yihong Yang, Zihao Jia, Tianyu Zhang, Mingxuan Guo, Rui Li, Xixi Li
{"title":"基于理论计算的蓝藻毒素微生物降解影响因素分析。","authors":"Jianglong Ling, Ye Ruan, Congchao Xu, Di Liu, Bowen Shi, Yihong Yang, Zihao Jia, Tianyu Zhang, Mingxuan Guo, Rui Li, Xixi Li","doi":"10.1007/s10653-024-02192-z","DOIUrl":null,"url":null,"abstract":"<p><p>Cyanobacterial toxins are the most common algal toxins, which are highly toxic and can persist in the aquatic environment without easy degradation, posing risks to the ecosystem and human health that cannot be ignored. Although microbiological methods for the removal of cyanobacterial toxins from aqueous environments are highly efficient, their degradation efficiency is susceptible to many abiotic environmental factors. In this paper, Microcystin-LR (MC-LR) and its microbial degrading enzymes were selected to study the effects of common environmental factors (temperature (T), NO<sub>3</sub><sup>-</sup>, NH<sub>4</sub><sup>+</sup>, Cu<sup>2+</sup>, Zn<sup>2+</sup>) and their levels during microbial degradation of cyanobacterial toxins in aqueous environments by using molecular docking, molecular dynamics simulation, analytical factor design, and the combined toxicokinetics of TOPKAT (toxicity prediction). It was found that the addition of T, NO<sub>3</sub><sup>-</sup> and Cu<sup>2+</sup> to the aqueous environment promoted the microbial degradation of MC-LR, while the addition of NH<sub>4</sub><sup>+</sup> and Zn<sup>2+</sup> inhibited the degradation; The level effect study showed that the microbial degradation of MC-LR was promoted by increasing levels of added T and NO<sub>3</sub><sup>-</sup> in the aqueous environment, whereas it was inhibited and then promoted by increasing levels of NH<sub>4</sub><sup>+</sup>, Cu<sup>2+</sup> and Zn<sup>2+</sup>. In addition, the predicted toxicity of common Microcystins (MCs) showed that MC-LR, Microcystin-RR (MC-RR) and Microcystin-YR (MC-YR) were not carcinogenic, developmentally toxic, mutagenic or ocular irritants in humans. MC-LR and MC-RR are mild skin irritants and MC-YR is not a skin irritant. MC-YR has a higher chronic and acute toxicity in humans than MC-LR and MC-RR. Acute/chronic toxicity intensity for aquatic animals: MC-YR > MC-LR > MC-RR and for aquatic plants: MC-LR > MC-YR > MC-RR. This suggests that MC-YR also has a high environmental health risk. This paper provides theoretical support for optimizing the environmental conditions for microbial degradation of cyanobacterial toxins by studying the effects of common environmental factors and their level effects in the aquatic environment.</p>","PeriodicalId":11759,"journal":{"name":"Environmental Geochemistry and Health","volume":"46 11","pages":"430"},"PeriodicalIF":3.2000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of factors affecting microbial degradation of cyanobacterial toxins based on theoretical calculations.\",\"authors\":\"Jianglong Ling, Ye Ruan, Congchao Xu, Di Liu, Bowen Shi, Yihong Yang, Zihao Jia, Tianyu Zhang, Mingxuan Guo, Rui Li, Xixi Li\",\"doi\":\"10.1007/s10653-024-02192-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cyanobacterial toxins are the most common algal toxins, which are highly toxic and can persist in the aquatic environment without easy degradation, posing risks to the ecosystem and human health that cannot be ignored. Although microbiological methods for the removal of cyanobacterial toxins from aqueous environments are highly efficient, their degradation efficiency is susceptible to many abiotic environmental factors. In this paper, Microcystin-LR (MC-LR) and its microbial degrading enzymes were selected to study the effects of common environmental factors (temperature (T), NO<sub>3</sub><sup>-</sup>, NH<sub>4</sub><sup>+</sup>, Cu<sup>2+</sup>, Zn<sup>2+</sup>) and their levels during microbial degradation of cyanobacterial toxins in aqueous environments by using molecular docking, molecular dynamics simulation, analytical factor design, and the combined toxicokinetics of TOPKAT (toxicity prediction). It was found that the addition of T, NO<sub>3</sub><sup>-</sup> and Cu<sup>2+</sup> to the aqueous environment promoted the microbial degradation of MC-LR, while the addition of NH<sub>4</sub><sup>+</sup> and Zn<sup>2+</sup> inhibited the degradation; The level effect study showed that the microbial degradation of MC-LR was promoted by increasing levels of added T and NO<sub>3</sub><sup>-</sup> in the aqueous environment, whereas it was inhibited and then promoted by increasing levels of NH<sub>4</sub><sup>+</sup>, Cu<sup>2+</sup> and Zn<sup>2+</sup>. In addition, the predicted toxicity of common Microcystins (MCs) showed that MC-LR, Microcystin-RR (MC-RR) and Microcystin-YR (MC-YR) were not carcinogenic, developmentally toxic, mutagenic or ocular irritants in humans. MC-LR and MC-RR are mild skin irritants and MC-YR is not a skin irritant. MC-YR has a higher chronic and acute toxicity in humans than MC-LR and MC-RR. Acute/chronic toxicity intensity for aquatic animals: MC-YR > MC-LR > MC-RR and for aquatic plants: MC-LR > MC-YR > MC-RR. This suggests that MC-YR also has a high environmental health risk. This paper provides theoretical support for optimizing the environmental conditions for microbial degradation of cyanobacterial toxins by studying the effects of common environmental factors and their level effects in the aquatic environment.</p>\",\"PeriodicalId\":11759,\"journal\":{\"name\":\"Environmental Geochemistry and Health\",\"volume\":\"46 11\",\"pages\":\"430\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Geochemistry and Health\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s10653-024-02192-z\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Geochemistry and Health","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10653-024-02192-z","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Analysis of factors affecting microbial degradation of cyanobacterial toxins based on theoretical calculations.
Cyanobacterial toxins are the most common algal toxins, which are highly toxic and can persist in the aquatic environment without easy degradation, posing risks to the ecosystem and human health that cannot be ignored. Although microbiological methods for the removal of cyanobacterial toxins from aqueous environments are highly efficient, their degradation efficiency is susceptible to many abiotic environmental factors. In this paper, Microcystin-LR (MC-LR) and its microbial degrading enzymes were selected to study the effects of common environmental factors (temperature (T), NO3-, NH4+, Cu2+, Zn2+) and their levels during microbial degradation of cyanobacterial toxins in aqueous environments by using molecular docking, molecular dynamics simulation, analytical factor design, and the combined toxicokinetics of TOPKAT (toxicity prediction). It was found that the addition of T, NO3- and Cu2+ to the aqueous environment promoted the microbial degradation of MC-LR, while the addition of NH4+ and Zn2+ inhibited the degradation; The level effect study showed that the microbial degradation of MC-LR was promoted by increasing levels of added T and NO3- in the aqueous environment, whereas it was inhibited and then promoted by increasing levels of NH4+, Cu2+ and Zn2+. In addition, the predicted toxicity of common Microcystins (MCs) showed that MC-LR, Microcystin-RR (MC-RR) and Microcystin-YR (MC-YR) were not carcinogenic, developmentally toxic, mutagenic or ocular irritants in humans. MC-LR and MC-RR are mild skin irritants and MC-YR is not a skin irritant. MC-YR has a higher chronic and acute toxicity in humans than MC-LR and MC-RR. Acute/chronic toxicity intensity for aquatic animals: MC-YR > MC-LR > MC-RR and for aquatic plants: MC-LR > MC-YR > MC-RR. This suggests that MC-YR also has a high environmental health risk. This paper provides theoretical support for optimizing the environmental conditions for microbial degradation of cyanobacterial toxins by studying the effects of common environmental factors and their level effects in the aquatic environment.
期刊介绍:
Environmental Geochemistry and Health publishes original research papers and review papers across the broad field of environmental geochemistry. Environmental geochemistry and health establishes and explains links between the natural or disturbed chemical composition of the earth’s surface and the health of plants, animals and people.
Beneficial elements regulate or promote enzymatic and hormonal activity whereas other elements may be toxic. Bedrock geochemistry controls the composition of soil and hence that of water and vegetation. Environmental issues, such as pollution, arising from the extraction and use of mineral resources, are discussed. The effects of contaminants introduced into the earth’s geochemical systems are examined. Geochemical surveys of soil, water and plants show how major and trace elements are distributed geographically. Associated epidemiological studies reveal the possibility of causal links between the natural or disturbed geochemical environment and disease. Experimental research illuminates the nature or consequences of natural or disturbed geochemical processes.
The journal particularly welcomes novel research linking environmental geochemistry and health issues on such topics as: heavy metals (including mercury), persistent organic pollutants (POPs), and mixed chemicals emitted through human activities, such as uncontrolled recycling of electronic-waste; waste recycling; surface-atmospheric interaction processes (natural and anthropogenic emissions, vertical transport, deposition, and physical-chemical interaction) of gases and aerosols; phytoremediation/restoration of contaminated sites; food contamination and safety; environmental effects of medicines; effects and toxicity of mixed pollutants; speciation of heavy metals/metalloids; effects of mining; disturbed geochemistry from human behavior, natural or man-made hazards; particle and nanoparticle toxicology; risk and the vulnerability of populations, etc.