{"title":"通过联合补充硒、钙和镁,协同缓解水稻(Oryza sativa L.)的镉胁迫。","authors":"Chukwuma Arinzechi, Chunhua Dong, Peicheng Huang, Pengwei Zhao, Qi Liao, Qingzhu Li, Zhihui Yang","doi":"10.1007/s10653-024-02209-7","DOIUrl":null,"url":null,"abstract":"<p><p>Rice is susceptible to cadmium (Cd) accumulation, which poses a threat to human health. Traditional methods for mitigating moderately contaminated soils can be impractical or prohibitively expensive, necessitating innovative approaches to reduce Cd uptake in rice. Nutrient management has emerged as a promising solution by leveraging the antagonistic interactions between nutrients and cadmium. However, the research on the synergistic effects of multiple nutrients on Cd toxicity in rice is limited. To address this limitation, pot experiments was utilized to investigate the combined effects of selenium (Se), calcium (Ca), and magnesium (Mg) denoted as (SeCM) on Cd uptake and translocation in rice. The synergistic application of SeCM reduced grain Cd levels by 55.0%, surpassing the individual effects of Se (42.1%) and CM (40.5%), and bringing Cd content below the safe consumption limits. SeCM treatment exhibited multiple beneficial effects: it decreased malondialdehyde (MDA) levels, enhanced catalase (CAT), peroxidase (POD) and glutathione (GSH) enzyme activities, limited Cd translocation from roots to shoots, promoted iron plaque formation, and reduced Cd transfer from soil to iron plaque and subsequently to rice grains. Correlation analysis revealed strong negative relationships between rice Cd content, Cd translocation factors, and the translocation factors of selenium, calcium, and magnesium. These findings suggest that selenium, calcium, and magnesium collaboratively mitigate Cd toxicity through antagonistic and competitive interactions. These nutrients enhance the uptake of beneficial elements, while competitively inhibiting the translocation and accumulation of Cd in rice plants. SeCM application offers a promising strategy for producing nutrient-rich, and Cd-safe rice in contaminated soils.</p>","PeriodicalId":11759,"journal":{"name":"Environmental Geochemistry and Health","volume":"46 11","pages":"435"},"PeriodicalIF":3.2000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic mitigation of cadmium stress in rice (Oryza sativa L.) through combined selenium, calcium, and magnesium supplementation.\",\"authors\":\"Chukwuma Arinzechi, Chunhua Dong, Peicheng Huang, Pengwei Zhao, Qi Liao, Qingzhu Li, Zhihui Yang\",\"doi\":\"10.1007/s10653-024-02209-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Rice is susceptible to cadmium (Cd) accumulation, which poses a threat to human health. Traditional methods for mitigating moderately contaminated soils can be impractical or prohibitively expensive, necessitating innovative approaches to reduce Cd uptake in rice. Nutrient management has emerged as a promising solution by leveraging the antagonistic interactions between nutrients and cadmium. However, the research on the synergistic effects of multiple nutrients on Cd toxicity in rice is limited. To address this limitation, pot experiments was utilized to investigate the combined effects of selenium (Se), calcium (Ca), and magnesium (Mg) denoted as (SeCM) on Cd uptake and translocation in rice. The synergistic application of SeCM reduced grain Cd levels by 55.0%, surpassing the individual effects of Se (42.1%) and CM (40.5%), and bringing Cd content below the safe consumption limits. SeCM treatment exhibited multiple beneficial effects: it decreased malondialdehyde (MDA) levels, enhanced catalase (CAT), peroxidase (POD) and glutathione (GSH) enzyme activities, limited Cd translocation from roots to shoots, promoted iron plaque formation, and reduced Cd transfer from soil to iron plaque and subsequently to rice grains. Correlation analysis revealed strong negative relationships between rice Cd content, Cd translocation factors, and the translocation factors of selenium, calcium, and magnesium. These findings suggest that selenium, calcium, and magnesium collaboratively mitigate Cd toxicity through antagonistic and competitive interactions. These nutrients enhance the uptake of beneficial elements, while competitively inhibiting the translocation and accumulation of Cd in rice plants. SeCM application offers a promising strategy for producing nutrient-rich, and Cd-safe rice in contaminated soils.</p>\",\"PeriodicalId\":11759,\"journal\":{\"name\":\"Environmental Geochemistry and Health\",\"volume\":\"46 11\",\"pages\":\"435\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Geochemistry and Health\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s10653-024-02209-7\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Geochemistry and Health","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10653-024-02209-7","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Synergistic mitigation of cadmium stress in rice (Oryza sativa L.) through combined selenium, calcium, and magnesium supplementation.
Rice is susceptible to cadmium (Cd) accumulation, which poses a threat to human health. Traditional methods for mitigating moderately contaminated soils can be impractical or prohibitively expensive, necessitating innovative approaches to reduce Cd uptake in rice. Nutrient management has emerged as a promising solution by leveraging the antagonistic interactions between nutrients and cadmium. However, the research on the synergistic effects of multiple nutrients on Cd toxicity in rice is limited. To address this limitation, pot experiments was utilized to investigate the combined effects of selenium (Se), calcium (Ca), and magnesium (Mg) denoted as (SeCM) on Cd uptake and translocation in rice. The synergistic application of SeCM reduced grain Cd levels by 55.0%, surpassing the individual effects of Se (42.1%) and CM (40.5%), and bringing Cd content below the safe consumption limits. SeCM treatment exhibited multiple beneficial effects: it decreased malondialdehyde (MDA) levels, enhanced catalase (CAT), peroxidase (POD) and glutathione (GSH) enzyme activities, limited Cd translocation from roots to shoots, promoted iron plaque formation, and reduced Cd transfer from soil to iron plaque and subsequently to rice grains. Correlation analysis revealed strong negative relationships between rice Cd content, Cd translocation factors, and the translocation factors of selenium, calcium, and magnesium. These findings suggest that selenium, calcium, and magnesium collaboratively mitigate Cd toxicity through antagonistic and competitive interactions. These nutrients enhance the uptake of beneficial elements, while competitively inhibiting the translocation and accumulation of Cd in rice plants. SeCM application offers a promising strategy for producing nutrient-rich, and Cd-safe rice in contaminated soils.
期刊介绍:
Environmental Geochemistry and Health publishes original research papers and review papers across the broad field of environmental geochemistry. Environmental geochemistry and health establishes and explains links between the natural or disturbed chemical composition of the earth’s surface and the health of plants, animals and people.
Beneficial elements regulate or promote enzymatic and hormonal activity whereas other elements may be toxic. Bedrock geochemistry controls the composition of soil and hence that of water and vegetation. Environmental issues, such as pollution, arising from the extraction and use of mineral resources, are discussed. The effects of contaminants introduced into the earth’s geochemical systems are examined. Geochemical surveys of soil, water and plants show how major and trace elements are distributed geographically. Associated epidemiological studies reveal the possibility of causal links between the natural or disturbed geochemical environment and disease. Experimental research illuminates the nature or consequences of natural or disturbed geochemical processes.
The journal particularly welcomes novel research linking environmental geochemistry and health issues on such topics as: heavy metals (including mercury), persistent organic pollutants (POPs), and mixed chemicals emitted through human activities, such as uncontrolled recycling of electronic-waste; waste recycling; surface-atmospheric interaction processes (natural and anthropogenic emissions, vertical transport, deposition, and physical-chemical interaction) of gases and aerosols; phytoremediation/restoration of contaminated sites; food contamination and safety; environmental effects of medicines; effects and toxicity of mixed pollutants; speciation of heavy metals/metalloids; effects of mining; disturbed geochemistry from human behavior, natural or man-made hazards; particle and nanoparticle toxicology; risk and the vulnerability of populations, etc.