Ao Bian , Ye Tian , Chao Zhang , Xiong Zhou , Wensheng Ma , Lian Hu , Liang Yuan
{"title":"中试规模往复式移动炉排炉中城市固体废物空气气化的实验评估","authors":"Ao Bian , Ye Tian , Chao Zhang , Xiong Zhou , Wensheng Ma , Lian Hu , Liang Yuan","doi":"10.1016/j.joei.2024.101833","DOIUrl":null,"url":null,"abstract":"<div><div>The increasing volume of municipal solid waste (MSW) worldwide presents significant environmental challenges, necessitating the development of efficient waste-to-energy (WtE) solutions. Among various thermochemical methods, gasification offers a promising approach for converting MSW into syngas, which can be utilized for energy generation. This study investigates the gasification characteristics of MSW in a pilot-scale reciprocating moving-grate furnace, focusing on the effect of key operating parameters such as equivalence ratio (ER), gasification temperature, and gasifying agent-staged ratio on gasification characteristics.</div><div>Seven experimental schemes were tested with varying lower heating values (LHV) of MSW (ranging from 6.98 to 15.1 MJ/kg) and throughputs (ranging from 0.77 to 1.67 tons per day) to assess the adaptability and stability of the moving-grate system under different conditions. The results indicate that an ER between 0.6 and 0.7, a gasification temperature of 760 °C, and a gasifying agent-staged ratio of 7:3 are optimal for achieving a maximum energy conversion efficiency of 71.6 %. It was observed that the LHV of syngas decreases when the gasification temperature exceeds 850 °C due to increased oxidation of light hydrocarbons. Moreover, the study highlights the influence of grate moving speed on residence time and reaction completeness, which are critical for optimizing syngas yield and quality.</div><div>The findings demonstrate that while the maximum energy conversion efficiency of the moving-grate system is lower than other reactor types, its lower capital and operating costs, due to the lack of dedicated feedstock pretreatment, make it a viable option for small-scale and pilot-scale applications. This study provides valuable insights into optimizing MSW gasification processes and underscores the potential of the moving-grate furnace for adaptable and cost-effective WtE applications. The novelty of this work lies in the comprehensive evaluation of the moving-grate gasification process under varied operating conditions, providing a foundation for future research on improving efficiency and reducing environmental impact in large-scale MSW management.</div></div>","PeriodicalId":17287,"journal":{"name":"Journal of The Energy Institute","volume":"117 ","pages":"Article 101833"},"PeriodicalIF":5.6000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental evaluation of municipal solid waste air-gasification in a pilot-scale reciprocating moving-grate furnace\",\"authors\":\"Ao Bian , Ye Tian , Chao Zhang , Xiong Zhou , Wensheng Ma , Lian Hu , Liang Yuan\",\"doi\":\"10.1016/j.joei.2024.101833\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The increasing volume of municipal solid waste (MSW) worldwide presents significant environmental challenges, necessitating the development of efficient waste-to-energy (WtE) solutions. Among various thermochemical methods, gasification offers a promising approach for converting MSW into syngas, which can be utilized for energy generation. This study investigates the gasification characteristics of MSW in a pilot-scale reciprocating moving-grate furnace, focusing on the effect of key operating parameters such as equivalence ratio (ER), gasification temperature, and gasifying agent-staged ratio on gasification characteristics.</div><div>Seven experimental schemes were tested with varying lower heating values (LHV) of MSW (ranging from 6.98 to 15.1 MJ/kg) and throughputs (ranging from 0.77 to 1.67 tons per day) to assess the adaptability and stability of the moving-grate system under different conditions. The results indicate that an ER between 0.6 and 0.7, a gasification temperature of 760 °C, and a gasifying agent-staged ratio of 7:3 are optimal for achieving a maximum energy conversion efficiency of 71.6 %. It was observed that the LHV of syngas decreases when the gasification temperature exceeds 850 °C due to increased oxidation of light hydrocarbons. Moreover, the study highlights the influence of grate moving speed on residence time and reaction completeness, which are critical for optimizing syngas yield and quality.</div><div>The findings demonstrate that while the maximum energy conversion efficiency of the moving-grate system is lower than other reactor types, its lower capital and operating costs, due to the lack of dedicated feedstock pretreatment, make it a viable option for small-scale and pilot-scale applications. This study provides valuable insights into optimizing MSW gasification processes and underscores the potential of the moving-grate furnace for adaptable and cost-effective WtE applications. The novelty of this work lies in the comprehensive evaluation of the moving-grate gasification process under varied operating conditions, providing a foundation for future research on improving efficiency and reducing environmental impact in large-scale MSW management.</div></div>\",\"PeriodicalId\":17287,\"journal\":{\"name\":\"Journal of The Energy Institute\",\"volume\":\"117 \",\"pages\":\"Article 101833\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Energy Institute\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1743967124003118\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Energy Institute","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1743967124003118","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Experimental evaluation of municipal solid waste air-gasification in a pilot-scale reciprocating moving-grate furnace
The increasing volume of municipal solid waste (MSW) worldwide presents significant environmental challenges, necessitating the development of efficient waste-to-energy (WtE) solutions. Among various thermochemical methods, gasification offers a promising approach for converting MSW into syngas, which can be utilized for energy generation. This study investigates the gasification characteristics of MSW in a pilot-scale reciprocating moving-grate furnace, focusing on the effect of key operating parameters such as equivalence ratio (ER), gasification temperature, and gasifying agent-staged ratio on gasification characteristics.
Seven experimental schemes were tested with varying lower heating values (LHV) of MSW (ranging from 6.98 to 15.1 MJ/kg) and throughputs (ranging from 0.77 to 1.67 tons per day) to assess the adaptability and stability of the moving-grate system under different conditions. The results indicate that an ER between 0.6 and 0.7, a gasification temperature of 760 °C, and a gasifying agent-staged ratio of 7:3 are optimal for achieving a maximum energy conversion efficiency of 71.6 %. It was observed that the LHV of syngas decreases when the gasification temperature exceeds 850 °C due to increased oxidation of light hydrocarbons. Moreover, the study highlights the influence of grate moving speed on residence time and reaction completeness, which are critical for optimizing syngas yield and quality.
The findings demonstrate that while the maximum energy conversion efficiency of the moving-grate system is lower than other reactor types, its lower capital and operating costs, due to the lack of dedicated feedstock pretreatment, make it a viable option for small-scale and pilot-scale applications. This study provides valuable insights into optimizing MSW gasification processes and underscores the potential of the moving-grate furnace for adaptable and cost-effective WtE applications. The novelty of this work lies in the comprehensive evaluation of the moving-grate gasification process under varied operating conditions, providing a foundation for future research on improving efficiency and reducing environmental impact in large-scale MSW management.
期刊介绍:
The Journal of the Energy Institute provides peer reviewed coverage of original high quality research on energy, engineering and technology.The coverage is broad and the main areas of interest include:
Combustion engineering and associated technologies; process heating; power generation; engines and propulsion; emissions and environmental pollution control; clean coal technologies; carbon abatement technologies
Emissions and environmental pollution control; safety and hazards;
Clean coal technologies; carbon abatement technologies, including carbon capture and storage, CCS;
Petroleum engineering and fuel quality, including storage and transport
Alternative energy sources; biomass utilisation and biomass conversion technologies; energy from waste, incineration and recycling
Energy conversion, energy recovery and energy efficiency; space heating, fuel cells, heat pumps and cooling systems
Energy storage
The journal''s coverage reflects changes in energy technology that result from the transition to more efficient energy production and end use together with reduced carbon emission.