{"title":"范德华修正函数对单层 GeSe 多晶体的影响:深入探讨","authors":"Abdullah Kutluca , Engin Deligoz , Haci Ozisik","doi":"10.1016/j.commatsci.2024.113383","DOIUrl":null,"url":null,"abstract":"<div><div>A comprehensive ab initio calculations were conducted to analyze the structural, electronic, elastic, and phonon characteristics of monolayer GeSe polymorphs, utilizing various van der Waals corrections. The physical properties of layered GeSe polymorphs were investigated using the Perdew-Burke-Ernzerhof exchange–correlation functional, implemented within a generalized gradient approximation. The study presents findings on the effects of the DFT-D3 and DFT-D3(BJ) functionals with Grimme correction on the ground state properties, with a focus on weak van der Waals interactions. The mechanical and dynamic stability of monolayer GeSe polymorphs is indicated by the analysis of the elastic constants and phonon dispersion curves. Monolayer GeSe polymorphs are found to have an indirect band gap semiconductor structure using HSE06 for the considered phases. The band gaps of these polymorphs are predicted to range from approximately 0.95 to 2.47 eV, which falls within a highly useful energy range for practical applications. Additionally, this study is the first to investigate the anisotropic mechanical properties of these materials.</div></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of van der Waals corrected functionals on monolayer GeSe polymorphs: An in-depth exploration\",\"authors\":\"Abdullah Kutluca , Engin Deligoz , Haci Ozisik\",\"doi\":\"10.1016/j.commatsci.2024.113383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A comprehensive ab initio calculations were conducted to analyze the structural, electronic, elastic, and phonon characteristics of monolayer GeSe polymorphs, utilizing various van der Waals corrections. The physical properties of layered GeSe polymorphs were investigated using the Perdew-Burke-Ernzerhof exchange–correlation functional, implemented within a generalized gradient approximation. The study presents findings on the effects of the DFT-D3 and DFT-D3(BJ) functionals with Grimme correction on the ground state properties, with a focus on weak van der Waals interactions. The mechanical and dynamic stability of monolayer GeSe polymorphs is indicated by the analysis of the elastic constants and phonon dispersion curves. Monolayer GeSe polymorphs are found to have an indirect band gap semiconductor structure using HSE06 for the considered phases. The band gaps of these polymorphs are predicted to range from approximately 0.95 to 2.47 eV, which falls within a highly useful energy range for practical applications. Additionally, this study is the first to investigate the anisotropic mechanical properties of these materials.</div></div>\",\"PeriodicalId\":10650,\"journal\":{\"name\":\"Computational Materials Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927025624006049\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927025624006049","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Impact of van der Waals corrected functionals on monolayer GeSe polymorphs: An in-depth exploration
A comprehensive ab initio calculations were conducted to analyze the structural, electronic, elastic, and phonon characteristics of monolayer GeSe polymorphs, utilizing various van der Waals corrections. The physical properties of layered GeSe polymorphs were investigated using the Perdew-Burke-Ernzerhof exchange–correlation functional, implemented within a generalized gradient approximation. The study presents findings on the effects of the DFT-D3 and DFT-D3(BJ) functionals with Grimme correction on the ground state properties, with a focus on weak van der Waals interactions. The mechanical and dynamic stability of monolayer GeSe polymorphs is indicated by the analysis of the elastic constants and phonon dispersion curves. Monolayer GeSe polymorphs are found to have an indirect band gap semiconductor structure using HSE06 for the considered phases. The band gaps of these polymorphs are predicted to range from approximately 0.95 to 2.47 eV, which falls within a highly useful energy range for practical applications. Additionally, this study is the first to investigate the anisotropic mechanical properties of these materials.
期刊介绍:
The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.