填充和应变结晶弹性体网络加固的中观计算机模型

IF 3.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Computational Materials Science Pub Date : 2024-09-24 DOI:10.1016/j.commatsci.2024.113374
Lena Tarrach, Reinhard Hentschke
{"title":"填充和应变结晶弹性体网络加固的中观计算机模型","authors":"Lena Tarrach,&nbsp;Reinhard Hentschke","doi":"10.1016/j.commatsci.2024.113374","DOIUrl":null,"url":null,"abstract":"<div><div>To study reinforcement, particularly in Natural Rubber, a model developed for filled rubber is integrated into a model for elastomers which involves strain-induced crystallization (SIC). The combined model considers both the structures of strain-induced crystallites and the filler morphology in the rubber matrix. The focus here is on the investigation of 2D-networks. At small deformations, the Payne effect can be observed for model networks containing a fraction of filler larger than the percolation threshold. It is caused by breaking of filler-filler bonds. At larger deformations, the stress of both crystallizing and non-crystallizing model networks is amplified by the inclusion of filler. The effect is enhanced if the filler is finely dispersed. The combined model is extended by a critical free energy density for the rupture of model polymer chains. This rupture criterion determines whether the tensile strength and elongation at break of crystallizing or non-crystallizing networks are higher. Despite discrepancies for unfilled networks, the behavior of the tensile strength dependent on filler content approaches the experimental observations for finely dispersed filler.</div></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0927025624005950/pdfft?md5=f4b02b8ee64d163924f86d41bab5c1fc&pid=1-s2.0-S0927025624005950-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A mesoscopic computer model for reinforcement in filled and strain-crystallizing elastomer networks\",\"authors\":\"Lena Tarrach,&nbsp;Reinhard Hentschke\",\"doi\":\"10.1016/j.commatsci.2024.113374\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>To study reinforcement, particularly in Natural Rubber, a model developed for filled rubber is integrated into a model for elastomers which involves strain-induced crystallization (SIC). The combined model considers both the structures of strain-induced crystallites and the filler morphology in the rubber matrix. The focus here is on the investigation of 2D-networks. At small deformations, the Payne effect can be observed for model networks containing a fraction of filler larger than the percolation threshold. It is caused by breaking of filler-filler bonds. At larger deformations, the stress of both crystallizing and non-crystallizing model networks is amplified by the inclusion of filler. The effect is enhanced if the filler is finely dispersed. The combined model is extended by a critical free energy density for the rupture of model polymer chains. This rupture criterion determines whether the tensile strength and elongation at break of crystallizing or non-crystallizing networks are higher. Despite discrepancies for unfilled networks, the behavior of the tensile strength dependent on filler content approaches the experimental observations for finely dispersed filler.</div></div>\",\"PeriodicalId\":10650,\"journal\":{\"name\":\"Computational Materials Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0927025624005950/pdfft?md5=f4b02b8ee64d163924f86d41bab5c1fc&pid=1-s2.0-S0927025624005950-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927025624005950\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927025624005950","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

为了研究补强,尤其是天然橡胶的补强,我们将针对填充橡胶开发的模型与涉及应变诱导结晶(SIC)的弹性体模型相结合。该组合模型同时考虑了橡胶基体中应变诱导结晶的结构和填充物形态。这里的重点是研究二维网络。在小变形情况下,对于含有大于渗流阈值的填充物的模型网络,可以观察到佩恩效应。这是由于填料-填料键断裂造成的。在变形较大时,结晶和非结晶模型网络的应力都会因填料的加入而放大。如果填料分散得很细,这种效应就会增强。模型聚合物链断裂的临界自由能密度扩展了组合模型。该断裂标准决定了结晶网络和非结晶网络的拉伸强度和断裂伸长率是否更高。尽管未填充网络存在差异,但拉伸强度与填充物含量的关系接近于精细分散填充物的实验观察结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A mesoscopic computer model for reinforcement in filled and strain-crystallizing elastomer networks
To study reinforcement, particularly in Natural Rubber, a model developed for filled rubber is integrated into a model for elastomers which involves strain-induced crystallization (SIC). The combined model considers both the structures of strain-induced crystallites and the filler morphology in the rubber matrix. The focus here is on the investigation of 2D-networks. At small deformations, the Payne effect can be observed for model networks containing a fraction of filler larger than the percolation threshold. It is caused by breaking of filler-filler bonds. At larger deformations, the stress of both crystallizing and non-crystallizing model networks is amplified by the inclusion of filler. The effect is enhanced if the filler is finely dispersed. The combined model is extended by a critical free energy density for the rupture of model polymer chains. This rupture criterion determines whether the tensile strength and elongation at break of crystallizing or non-crystallizing networks are higher. Despite discrepancies for unfilled networks, the behavior of the tensile strength dependent on filler content approaches the experimental observations for finely dispersed filler.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Materials Science
Computational Materials Science 工程技术-材料科学:综合
CiteScore
6.50
自引率
6.10%
发文量
665
审稿时长
26 days
期刊介绍: The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.
期刊最新文献
Nanodroplet bouncing behaviors of bonded graphene-carbon nanotube hybrid film Atomistic simulation and machine learning predictions of mechanical response in nanotube-polymer composites considering filler morphology and aggregation High throughput screening of new piezoelectric materials using graph machine learning and knowledge graph approach MicroSim: A high-performance phase-field solver based on CPU and GPU implementations Introducing Materials Fingerprint (MatPrint): A novel method in graphical material representation and features compression
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1