Clement N. Ekaputra , Jovid U. Rakhmonov , Christian Leinenbach , David C. Dunand
{"title":"通过激光粉末床熔融技术制造的共晶 Al-Ce-X(X=Mn、Cr、V、Mo、W)合金","authors":"Clement N. Ekaputra , Jovid U. Rakhmonov , Christian Leinenbach , David C. Dunand","doi":"10.1016/j.addma.2024.104442","DOIUrl":null,"url":null,"abstract":"<div><div>We characterize the microstructures and high-temperature mechanical properties of Al-2Ce and ternary Al-2Ce-1X (at.%) alloys fabricated by laser powder-bed fusion (LPBF), where X = Mn, Cr, V, Mo, and W are slow-diffusing transition metals. All ternary alloys show a hypereutectic microstructure in the as-LPBF state, containing an interconnected network of eutectic Al<sub>11</sub>Ce<sub>3</sub> phases (∼10 vol.%) and an additional population of submicron, equiaxed Al<sub>20</sub>CeX<sub>2</sub> primary precipitates (∼10 vol.%) which are isomorphous among these five alloys. Similar microstructures are present in arc-melted rods and atomized powders but are coarser due to the slower cooling rates in these processes. The hardness of the as-LPBF ternary Al-Ce-X alloys (1300–1400 MPa) is higher than that of the binary Al-Ce alloy (∼1100 MPa) due to the higher volume fraction of strengthening phases. Furthermore, during exposure at 400 °C for up to three months, greater hardness retention is achieved in the ternary Al-Ce-X alloys (65–75%) than in the binary Al-Ce alloy (∼55%), which is attributed to the extreme coarsening resistance of the Al<sub>20</sub>CeX<sub>2</sub> precipitates imparted by the very slow-diffusing ternary solute. These coarsening-resistant Al<sub>20</sub>CeX<sub>2</sub> precipitates also substantially improve alloy creep resistance, increasing the threshold stress for dislocation creep at 300°C from ∼32 MPa for the binary Al-Ce alloy to ∼77–100 MPa for the ternary Al-Ce-X alloys, and at 400°C from <10 MPa for the binary Al-Ce alloy to >40 MPa for the ternary Al-Ce-V alloy.</div></div>","PeriodicalId":7172,"journal":{"name":"Additive manufacturing","volume":null,"pages":null},"PeriodicalIF":10.3000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hypereutectic Al-Ce-X (X=Mn, Cr, V, Mo, W) alloys fabricated by laser powder-bed fusion\",\"authors\":\"Clement N. Ekaputra , Jovid U. Rakhmonov , Christian Leinenbach , David C. Dunand\",\"doi\":\"10.1016/j.addma.2024.104442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We characterize the microstructures and high-temperature mechanical properties of Al-2Ce and ternary Al-2Ce-1X (at.%) alloys fabricated by laser powder-bed fusion (LPBF), where X = Mn, Cr, V, Mo, and W are slow-diffusing transition metals. All ternary alloys show a hypereutectic microstructure in the as-LPBF state, containing an interconnected network of eutectic Al<sub>11</sub>Ce<sub>3</sub> phases (∼10 vol.%) and an additional population of submicron, equiaxed Al<sub>20</sub>CeX<sub>2</sub> primary precipitates (∼10 vol.%) which are isomorphous among these five alloys. Similar microstructures are present in arc-melted rods and atomized powders but are coarser due to the slower cooling rates in these processes. The hardness of the as-LPBF ternary Al-Ce-X alloys (1300–1400 MPa) is higher than that of the binary Al-Ce alloy (∼1100 MPa) due to the higher volume fraction of strengthening phases. Furthermore, during exposure at 400 °C for up to three months, greater hardness retention is achieved in the ternary Al-Ce-X alloys (65–75%) than in the binary Al-Ce alloy (∼55%), which is attributed to the extreme coarsening resistance of the Al<sub>20</sub>CeX<sub>2</sub> precipitates imparted by the very slow-diffusing ternary solute. These coarsening-resistant Al<sub>20</sub>CeX<sub>2</sub> precipitates also substantially improve alloy creep resistance, increasing the threshold stress for dislocation creep at 300°C from ∼32 MPa for the binary Al-Ce alloy to ∼77–100 MPa for the ternary Al-Ce-X alloys, and at 400°C from <10 MPa for the binary Al-Ce alloy to >40 MPa for the ternary Al-Ce-V alloy.</div></div>\",\"PeriodicalId\":7172,\"journal\":{\"name\":\"Additive manufacturing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.3000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Additive manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214860424004883\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Additive manufacturing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214860424004883","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
We characterize the microstructures and high-temperature mechanical properties of Al-2Ce and ternary Al-2Ce-1X (at.%) alloys fabricated by laser powder-bed fusion (LPBF), where X = Mn, Cr, V, Mo, and W are slow-diffusing transition metals. All ternary alloys show a hypereutectic microstructure in the as-LPBF state, containing an interconnected network of eutectic Al11Ce3 phases (∼10 vol.%) and an additional population of submicron, equiaxed Al20CeX2 primary precipitates (∼10 vol.%) which are isomorphous among these five alloys. Similar microstructures are present in arc-melted rods and atomized powders but are coarser due to the slower cooling rates in these processes. The hardness of the as-LPBF ternary Al-Ce-X alloys (1300–1400 MPa) is higher than that of the binary Al-Ce alloy (∼1100 MPa) due to the higher volume fraction of strengthening phases. Furthermore, during exposure at 400 °C for up to three months, greater hardness retention is achieved in the ternary Al-Ce-X alloys (65–75%) than in the binary Al-Ce alloy (∼55%), which is attributed to the extreme coarsening resistance of the Al20CeX2 precipitates imparted by the very slow-diffusing ternary solute. These coarsening-resistant Al20CeX2 precipitates also substantially improve alloy creep resistance, increasing the threshold stress for dislocation creep at 300°C from ∼32 MPa for the binary Al-Ce alloy to ∼77–100 MPa for the ternary Al-Ce-X alloys, and at 400°C from <10 MPa for the binary Al-Ce alloy to >40 MPa for the ternary Al-Ce-V alloy.
期刊介绍:
Additive Manufacturing stands as a peer-reviewed journal dedicated to delivering high-quality research papers and reviews in the field of additive manufacturing, serving both academia and industry leaders. The journal's objective is to recognize the innovative essence of additive manufacturing and its diverse applications, providing a comprehensive overview of current developments and future prospects.
The transformative potential of additive manufacturing technologies in product design and manufacturing is poised to disrupt traditional approaches. In response to this paradigm shift, a distinctive and comprehensive publication outlet was essential. Additive Manufacturing fulfills this need, offering a platform for engineers, materials scientists, and practitioners across academia and various industries to document and share innovations in these evolving technologies.