Liandi Guan , Fang Liu , Cun Zhang , Wei Wang , Jianwei Zhang , Qionglin Liang
{"title":"用于癌症治疗的卟啉基金属有机框架","authors":"Liandi Guan , Fang Liu , Cun Zhang , Wei Wang , Jianwei Zhang , Qionglin Liang","doi":"10.1016/j.asems.2024.100123","DOIUrl":null,"url":null,"abstract":"<div><div>Theranostics, integrating diagnostic and therapeutic functionalities, have emerged as advanced systems for timely cancer diagnosis and effective treatment. The development of versatile materials suitable for cancer theranostics is intensifying. Porphyrin-based metal-organic frameworks (MOFs) leverage the structural diversity and designability inherent in MOFs, alongside the robust photophysical, catalytic, and biological properties of porphyrins. These materials enhance the solubility and stability of porphyrins and facilitate their stable functionalized assemblies, conferring the potential for multimodal imaging diagnostics and precision therapeutics. In this review, we summarized the potential of porphyrin-based MOFs as cancer theranostics platforms, focusing on recent advancements in porphyrin-based MOFs, and highlighting their functionalized strategies and developments in diagnostic imaging and synergistic therapies. Finally, we proposed the challenges and prospects of these emerging materials in cancer theranostics.</div></div>","PeriodicalId":100036,"journal":{"name":"Advanced Sensor and Energy Materials","volume":"3 4","pages":"Article 100123"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773045X24000347/pdfft?md5=a7f73b22591dd7ae6783fa296693b3ef&pid=1-s2.0-S2773045X24000347-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Porphyrin-based metal-organic frameworks for cancer theranostics\",\"authors\":\"Liandi Guan , Fang Liu , Cun Zhang , Wei Wang , Jianwei Zhang , Qionglin Liang\",\"doi\":\"10.1016/j.asems.2024.100123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Theranostics, integrating diagnostic and therapeutic functionalities, have emerged as advanced systems for timely cancer diagnosis and effective treatment. The development of versatile materials suitable for cancer theranostics is intensifying. Porphyrin-based metal-organic frameworks (MOFs) leverage the structural diversity and designability inherent in MOFs, alongside the robust photophysical, catalytic, and biological properties of porphyrins. These materials enhance the solubility and stability of porphyrins and facilitate their stable functionalized assemblies, conferring the potential for multimodal imaging diagnostics and precision therapeutics. In this review, we summarized the potential of porphyrin-based MOFs as cancer theranostics platforms, focusing on recent advancements in porphyrin-based MOFs, and highlighting their functionalized strategies and developments in diagnostic imaging and synergistic therapies. Finally, we proposed the challenges and prospects of these emerging materials in cancer theranostics.</div></div>\",\"PeriodicalId\":100036,\"journal\":{\"name\":\"Advanced Sensor and Energy Materials\",\"volume\":\"3 4\",\"pages\":\"Article 100123\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2773045X24000347/pdfft?md5=a7f73b22591dd7ae6783fa296693b3ef&pid=1-s2.0-S2773045X24000347-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Sensor and Energy Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2773045X24000347\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Sensor and Energy Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773045X24000347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Porphyrin-based metal-organic frameworks for cancer theranostics
Theranostics, integrating diagnostic and therapeutic functionalities, have emerged as advanced systems for timely cancer diagnosis and effective treatment. The development of versatile materials suitable for cancer theranostics is intensifying. Porphyrin-based metal-organic frameworks (MOFs) leverage the structural diversity and designability inherent in MOFs, alongside the robust photophysical, catalytic, and biological properties of porphyrins. These materials enhance the solubility and stability of porphyrins and facilitate their stable functionalized assemblies, conferring the potential for multimodal imaging diagnostics and precision therapeutics. In this review, we summarized the potential of porphyrin-based MOFs as cancer theranostics platforms, focusing on recent advancements in porphyrin-based MOFs, and highlighting their functionalized strategies and developments in diagnostic imaging and synergistic therapies. Finally, we proposed the challenges and prospects of these emerging materials in cancer theranostics.