{"title":"煤粉炉中水电解气(HHO)辅助超低负荷燃烧的共燃模式和空气分级影响试验研究","authors":"Yize Zhang , Qiwei Wu , Yifan Zhu , Xiao Kang , Bingjun Hou , Hao Zhou","doi":"10.1016/j.joei.2024.101828","DOIUrl":null,"url":null,"abstract":"<div><div>Developing zero-carbon fuel (H<sub>2</sub>/NH<sub>3</sub>) co-firing technology with pulverized coal can improve the low-load flame instability and pollutant emissions of boilers during peak shaving. In this study, we propose to assist the low-load combustion of coal powder furnaces with the safer water electrolysis gas (HHO). To further optimize the combustion strategy, a one-dimensional furnace combustion system coupled with an HHO gas generation and transportation system was used to investigate the effects of injection methods and air staging on the flue gas emission and auxiliary combustion characteristics of the lignite load reduction process and ultra-low load. The results indicate that reducing the coal combustion load achieves carbon reduction and reduces actual CO<sub>2</sub> emissions. The excess air coefficient increases, resulting in higher NO<sub>X</sub> and lower CO emissions. Air staging can control NO<sub>X</sub> and CO emissions during load shedding, with a 40.49 % reduction in NOX at 30 % load. Under ultra-low load, HHO-assisted combustion increases the oxygen concentration in the furnace, increasing NO<sub>X</sub> emissions, while SO<sub>2</sub> decreases and then increases. However, the effect of HHO gas premixed mode (PM) on NO<sub>X</sub> generation is weaker than that of staged mode (SM). As the flow rate of HHO increases, HHO-SM promotes the conversion of CO to CO<sub>2</sub> and reduces CO emissions, while CO emissions under PM remain at ∼10 ppm. Both HHO injection methods exhibit assisted combustion effects for ultra-low load operation. Due to the different effects of the two on the recirculation zone inside the combustion, the auxiliary combustion effect of PM is superior than that of SM. At 1800L/h HHO, the decrease in combustion instability coefficient (<span><math><mrow><msub><mi>β</mi><mi>T</mi></msub></mrow></math></span>) of PM is 57.14 %, higher than that of SM. Air staging is beneficial for stable combustion under ultra-low load, but it can affect the auxiliary combustion of HHO gas. Under ultra-low load HHO co-firing conditions, 11%-OFA can also control NO<sub>X</sub> and CO emissions.</div></div>","PeriodicalId":17287,"journal":{"name":"Journal of The Energy Institute","volume":"117 ","pages":"Article 101828"},"PeriodicalIF":5.6000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental study on the effects of co-firing mode and air staging on the ultra-low load combustion assisted by water electrolysis gas (HHO) in a pulverized coal furnace\",\"authors\":\"Yize Zhang , Qiwei Wu , Yifan Zhu , Xiao Kang , Bingjun Hou , Hao Zhou\",\"doi\":\"10.1016/j.joei.2024.101828\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Developing zero-carbon fuel (H<sub>2</sub>/NH<sub>3</sub>) co-firing technology with pulverized coal can improve the low-load flame instability and pollutant emissions of boilers during peak shaving. In this study, we propose to assist the low-load combustion of coal powder furnaces with the safer water electrolysis gas (HHO). To further optimize the combustion strategy, a one-dimensional furnace combustion system coupled with an HHO gas generation and transportation system was used to investigate the effects of injection methods and air staging on the flue gas emission and auxiliary combustion characteristics of the lignite load reduction process and ultra-low load. The results indicate that reducing the coal combustion load achieves carbon reduction and reduces actual CO<sub>2</sub> emissions. The excess air coefficient increases, resulting in higher NO<sub>X</sub> and lower CO emissions. Air staging can control NO<sub>X</sub> and CO emissions during load shedding, with a 40.49 % reduction in NOX at 30 % load. Under ultra-low load, HHO-assisted combustion increases the oxygen concentration in the furnace, increasing NO<sub>X</sub> emissions, while SO<sub>2</sub> decreases and then increases. However, the effect of HHO gas premixed mode (PM) on NO<sub>X</sub> generation is weaker than that of staged mode (SM). As the flow rate of HHO increases, HHO-SM promotes the conversion of CO to CO<sub>2</sub> and reduces CO emissions, while CO emissions under PM remain at ∼10 ppm. Both HHO injection methods exhibit assisted combustion effects for ultra-low load operation. Due to the different effects of the two on the recirculation zone inside the combustion, the auxiliary combustion effect of PM is superior than that of SM. At 1800L/h HHO, the decrease in combustion instability coefficient (<span><math><mrow><msub><mi>β</mi><mi>T</mi></msub></mrow></math></span>) of PM is 57.14 %, higher than that of SM. Air staging is beneficial for stable combustion under ultra-low load, but it can affect the auxiliary combustion of HHO gas. Under ultra-low load HHO co-firing conditions, 11%-OFA can also control NO<sub>X</sub> and CO emissions.</div></div>\",\"PeriodicalId\":17287,\"journal\":{\"name\":\"Journal of The Energy Institute\",\"volume\":\"117 \",\"pages\":\"Article 101828\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Energy Institute\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1743967124003064\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Energy Institute","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1743967124003064","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
摘要
开发煤粉与零碳燃料(H2/NH3)共燃技术可改善锅炉在调峰期间的低负荷火焰不稳定性和污染物排放。在本研究中,我们建议使用更安全的水电解气体(HHO)来辅助煤粉炉的低负荷燃烧。为了进一步优化燃烧策略,我们利用一个与 HHO 气体生成和输送系统耦合的一维炉膛燃烧系统,研究了喷射方法和空气分段对褐煤减负荷过程和超低负荷时烟气排放和辅助燃烧特性的影响。结果表明,降低燃煤负荷可实现减碳,减少二氧化碳的实际排放量。过量空气系数增加,导致 NOX 增加,CO 排放减少。空气分级可控制减载过程中的 NOX 和 CO 排放,在 30% 负载时,NOX 可减少 40.49%。在超低负荷下,HHO 辅助燃烧增加了炉内氧气浓度,从而增加了 NOX 排放,而 SO2 则先减少后增加。然而,HHO 气体预混模式(PM)对 NOX 生成的影响弱于分段模式(SM)。随着 HHO 流量的增加,HHO-SM 会促进 CO 向 CO2 的转化并减少 CO 的排放,而 PM 下的 CO 排放则保持在 10 ppm 左右。两种 HHO 喷射方法在超低负荷运行时都表现出助燃效果。由于两者对燃烧内部再循环区的影响不同,PM 的辅助燃烧效果优于 SM。在 1800L/h HHO 条件下,PM 的燃烧不稳定系数(βT)下降率为 57.14%,高于 SM。空气分级有利于超低负荷下的稳定燃烧,但会影响 HHO 气体的辅助燃烧。在超低负荷 HHO 辅助燃烧条件下,11%-OFA 也能控制 NOX 和 CO 的排放。
Experimental study on the effects of co-firing mode and air staging on the ultra-low load combustion assisted by water electrolysis gas (HHO) in a pulverized coal furnace
Developing zero-carbon fuel (H2/NH3) co-firing technology with pulverized coal can improve the low-load flame instability and pollutant emissions of boilers during peak shaving. In this study, we propose to assist the low-load combustion of coal powder furnaces with the safer water electrolysis gas (HHO). To further optimize the combustion strategy, a one-dimensional furnace combustion system coupled with an HHO gas generation and transportation system was used to investigate the effects of injection methods and air staging on the flue gas emission and auxiliary combustion characteristics of the lignite load reduction process and ultra-low load. The results indicate that reducing the coal combustion load achieves carbon reduction and reduces actual CO2 emissions. The excess air coefficient increases, resulting in higher NOX and lower CO emissions. Air staging can control NOX and CO emissions during load shedding, with a 40.49 % reduction in NOX at 30 % load. Under ultra-low load, HHO-assisted combustion increases the oxygen concentration in the furnace, increasing NOX emissions, while SO2 decreases and then increases. However, the effect of HHO gas premixed mode (PM) on NOX generation is weaker than that of staged mode (SM). As the flow rate of HHO increases, HHO-SM promotes the conversion of CO to CO2 and reduces CO emissions, while CO emissions under PM remain at ∼10 ppm. Both HHO injection methods exhibit assisted combustion effects for ultra-low load operation. Due to the different effects of the two on the recirculation zone inside the combustion, the auxiliary combustion effect of PM is superior than that of SM. At 1800L/h HHO, the decrease in combustion instability coefficient () of PM is 57.14 %, higher than that of SM. Air staging is beneficial for stable combustion under ultra-low load, but it can affect the auxiliary combustion of HHO gas. Under ultra-low load HHO co-firing conditions, 11%-OFA can also control NOX and CO emissions.
期刊介绍:
The Journal of the Energy Institute provides peer reviewed coverage of original high quality research on energy, engineering and technology.The coverage is broad and the main areas of interest include:
Combustion engineering and associated technologies; process heating; power generation; engines and propulsion; emissions and environmental pollution control; clean coal technologies; carbon abatement technologies
Emissions and environmental pollution control; safety and hazards;
Clean coal technologies; carbon abatement technologies, including carbon capture and storage, CCS;
Petroleum engineering and fuel quality, including storage and transport
Alternative energy sources; biomass utilisation and biomass conversion technologies; energy from waste, incineration and recycling
Energy conversion, energy recovery and energy efficiency; space heating, fuel cells, heat pumps and cooling systems
Energy storage
The journal''s coverage reflects changes in energy technology that result from the transition to more efficient energy production and end use together with reduced carbon emission.