Hongde Wang , Dongli She , Jihui Ding , Shengqiang Tang , Jin Liu , Pei Xin
{"title":"盐渍化非饱和农用土壤的各向同性压缩行为:实验和构成研究","authors":"Hongde Wang , Dongli She , Jihui Ding , Shengqiang Tang , Jin Liu , Pei Xin","doi":"10.1016/j.still.2024.106314","DOIUrl":null,"url":null,"abstract":"<div><div>Salinity-induced soil degradation is a significant challenge in coastal reclamation areas, impacting agricultural productivity and infrastructure development. Variations in soil compression and deformation caused by changes in salinity warrant further investigation, particularly for agricultural applications. This study explores the relationship between soil pore water salinity and compressibility by conducting isotropic compression tests on salinized unsaturated agricultural soils treated with distilled water, 0.5 mol/L and 1 mol/L sodium chloride (NaCl) and calcium chloride (CaCl<sub>2</sub>) solutions. The results demonstrate that the type and concentration of salts significantly affect the compression behavior of these soils. The constitutive parameters were calibrated based on the experimental data. To account for osmotic suction, Barcelona Basic Model (BBM) was adjusted. The findings indicate that as pore water salinity increases, soil compressibility decreases, reflected by a compression index (<em>C</em><sub><em>c</em></sub>), and higher pre-consolidation stress (<em>p</em><sub><em>y</em></sub>). This modification aimed to quantify the impact of pore water salinity on soil compression. To validate the constitutive model, a numerical analysis of an isotropic compression test was carried out. This study contributes to our understanding of the isotropic compression behavior of coastal saline soil, proposes a constitutive framework for predicting soil responses under different salt conditions, and provides theoretical support for engineering construction in coastal reclamation areas.</div></div>","PeriodicalId":49503,"journal":{"name":"Soil & Tillage Research","volume":"245 ","pages":"Article 106314"},"PeriodicalIF":6.1000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Isotropic compression behavior of salinized unsaturated agricultural soil: An experimental and constitutive investigation\",\"authors\":\"Hongde Wang , Dongli She , Jihui Ding , Shengqiang Tang , Jin Liu , Pei Xin\",\"doi\":\"10.1016/j.still.2024.106314\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Salinity-induced soil degradation is a significant challenge in coastal reclamation areas, impacting agricultural productivity and infrastructure development. Variations in soil compression and deformation caused by changes in salinity warrant further investigation, particularly for agricultural applications. This study explores the relationship between soil pore water salinity and compressibility by conducting isotropic compression tests on salinized unsaturated agricultural soils treated with distilled water, 0.5 mol/L and 1 mol/L sodium chloride (NaCl) and calcium chloride (CaCl<sub>2</sub>) solutions. The results demonstrate that the type and concentration of salts significantly affect the compression behavior of these soils. The constitutive parameters were calibrated based on the experimental data. To account for osmotic suction, Barcelona Basic Model (BBM) was adjusted. The findings indicate that as pore water salinity increases, soil compressibility decreases, reflected by a compression index (<em>C</em><sub><em>c</em></sub>), and higher pre-consolidation stress (<em>p</em><sub><em>y</em></sub>). This modification aimed to quantify the impact of pore water salinity on soil compression. To validate the constitutive model, a numerical analysis of an isotropic compression test was carried out. This study contributes to our understanding of the isotropic compression behavior of coastal saline soil, proposes a constitutive framework for predicting soil responses under different salt conditions, and provides theoretical support for engineering construction in coastal reclamation areas.</div></div>\",\"PeriodicalId\":49503,\"journal\":{\"name\":\"Soil & Tillage Research\",\"volume\":\"245 \",\"pages\":\"Article 106314\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soil & Tillage Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167198724003155\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil & Tillage Research","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167198724003155","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
Isotropic compression behavior of salinized unsaturated agricultural soil: An experimental and constitutive investigation
Salinity-induced soil degradation is a significant challenge in coastal reclamation areas, impacting agricultural productivity and infrastructure development. Variations in soil compression and deformation caused by changes in salinity warrant further investigation, particularly for agricultural applications. This study explores the relationship between soil pore water salinity and compressibility by conducting isotropic compression tests on salinized unsaturated agricultural soils treated with distilled water, 0.5 mol/L and 1 mol/L sodium chloride (NaCl) and calcium chloride (CaCl2) solutions. The results demonstrate that the type and concentration of salts significantly affect the compression behavior of these soils. The constitutive parameters were calibrated based on the experimental data. To account for osmotic suction, Barcelona Basic Model (BBM) was adjusted. The findings indicate that as pore water salinity increases, soil compressibility decreases, reflected by a compression index (Cc), and higher pre-consolidation stress (py). This modification aimed to quantify the impact of pore water salinity on soil compression. To validate the constitutive model, a numerical analysis of an isotropic compression test was carried out. This study contributes to our understanding of the isotropic compression behavior of coastal saline soil, proposes a constitutive framework for predicting soil responses under different salt conditions, and provides theoretical support for engineering construction in coastal reclamation areas.
期刊介绍:
Soil & Tillage Research examines the physical, chemical and biological changes in the soil caused by tillage and field traffic. Manuscripts will be considered on aspects of soil science, physics, technology, mechanization and applied engineering for a sustainable balance among productivity, environmental quality and profitability. The following are examples of suitable topics within the scope of the journal of Soil and Tillage Research:
The agricultural and biosystems engineering associated with tillage (including no-tillage, reduced-tillage and direct drilling), irrigation and drainage, crops and crop rotations, fertilization, rehabilitation of mine spoils and processes used to modify soils. Soil change effects on establishment and yield of crops, growth of plants and roots, structure and erosion of soil, cycling of carbon and nutrients, greenhouse gas emissions, leaching, runoff and other processes that affect environmental quality. Characterization or modeling of tillage and field traffic responses, soil, climate, or topographic effects, soil deformation processes, tillage tools, traction devices, energy requirements, economics, surface and subsurface water quality effects, tillage effects on weed, pest and disease control, and their interactions.