Wentao Yu, Yan Zhang, Claudia T. K. Lo, Lei Kang, Terence T. W. Wong
{"title":"利用斑点照明和紫外线激发进行快速全彩序列切片断层扫描","authors":"Wentao Yu, Yan Zhang, Claudia T. K. Lo, Lei Kang, Terence T. W. Wong","doi":"10.1038/s44303-024-00040-4","DOIUrl":null,"url":null,"abstract":"Three-dimensional (3D) high-resolution large-volume imaging has remained a challenge. Translational rapid ultraviolet-excited sectioning tomography (TRUST) achieves rapid and cost-effective whole-organ subcellular imaging through iterative optical scanning and mechanical sectioning. However, the axial resolution is limited by the mechanical sectioning thickness or the UV light penetration depth in tissue. Here, assisted with high-and-low-frequency (HiLo) microscopy (HiLoTRUST), the optical sectioning thickness has been reduced from tens of micrometers to ~5.8 µm. In addition, HiLoTRUST has attained a finer mechanical sectioning thickness (10–15 µm) compared to TRUST (50 µm). For high-content imaging as in TRUST, we employed two additional UV light-emitting diodes (LEDs) specifically for uniform illumination. The full-color imaging ability and improved axial resolution of HiLoTRUST have been validated by two-dimensional (2D)/3D imaging of various mouse organs and human lung cancer specimens. HiLoTRUST offers a cost-effective, full-color, and high-resolution 3D imaging approach, showing its great potential in 3D histology applications.","PeriodicalId":501709,"journal":{"name":"npj Imaging","volume":" ","pages":"1-12"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44303-024-00040-4.pdf","citationCount":"0","resultStr":"{\"title\":\"Rapid full-color serial sectioning tomography with speckle illumination and ultraviolet excitation\",\"authors\":\"Wentao Yu, Yan Zhang, Claudia T. K. Lo, Lei Kang, Terence T. W. Wong\",\"doi\":\"10.1038/s44303-024-00040-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Three-dimensional (3D) high-resolution large-volume imaging has remained a challenge. Translational rapid ultraviolet-excited sectioning tomography (TRUST) achieves rapid and cost-effective whole-organ subcellular imaging through iterative optical scanning and mechanical sectioning. However, the axial resolution is limited by the mechanical sectioning thickness or the UV light penetration depth in tissue. Here, assisted with high-and-low-frequency (HiLo) microscopy (HiLoTRUST), the optical sectioning thickness has been reduced from tens of micrometers to ~5.8 µm. In addition, HiLoTRUST has attained a finer mechanical sectioning thickness (10–15 µm) compared to TRUST (50 µm). For high-content imaging as in TRUST, we employed two additional UV light-emitting diodes (LEDs) specifically for uniform illumination. The full-color imaging ability and improved axial resolution of HiLoTRUST have been validated by two-dimensional (2D)/3D imaging of various mouse organs and human lung cancer specimens. HiLoTRUST offers a cost-effective, full-color, and high-resolution 3D imaging approach, showing its great potential in 3D histology applications.\",\"PeriodicalId\":501709,\"journal\":{\"name\":\"npj Imaging\",\"volume\":\" \",\"pages\":\"1-12\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s44303-024-00040-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s44303-024-00040-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Imaging","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44303-024-00040-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Rapid full-color serial sectioning tomography with speckle illumination and ultraviolet excitation
Three-dimensional (3D) high-resolution large-volume imaging has remained a challenge. Translational rapid ultraviolet-excited sectioning tomography (TRUST) achieves rapid and cost-effective whole-organ subcellular imaging through iterative optical scanning and mechanical sectioning. However, the axial resolution is limited by the mechanical sectioning thickness or the UV light penetration depth in tissue. Here, assisted with high-and-low-frequency (HiLo) microscopy (HiLoTRUST), the optical sectioning thickness has been reduced from tens of micrometers to ~5.8 µm. In addition, HiLoTRUST has attained a finer mechanical sectioning thickness (10–15 µm) compared to TRUST (50 µm). For high-content imaging as in TRUST, we employed two additional UV light-emitting diodes (LEDs) specifically for uniform illumination. The full-color imaging ability and improved axial resolution of HiLoTRUST have been validated by two-dimensional (2D)/3D imaging of various mouse organs and human lung cancer specimens. HiLoTRUST offers a cost-effective, full-color, and high-resolution 3D imaging approach, showing its great potential in 3D histology applications.