铂表面阶跃束化不稳定性及其对电催化的影响

IF 42.8 1区 化学 Q1 CHEMISTRY, PHYSICAL Nature Catalysis Pub Date : 2024-09-30 DOI:10.1038/s41929-024-01232-2
Francesc Valls Mascaró, Marc T. M. Koper, Marcel J. Rost
{"title":"铂表面阶跃束化不稳定性及其对电催化的影响","authors":"Francesc Valls Mascaró, Marc T. M. Koper, Marcel J. Rost","doi":"10.1038/s41929-024-01232-2","DOIUrl":null,"url":null,"abstract":"The atomic-scale surface structure plays a major role in the electrochemical behaviour of a catalyst. The electrocatalytic activity towards many relevant reactions, such as the oxygen reduction reaction on platinum, exhibits a linear dependency with the number of steps until this linear scaling breaks down at high step densities. Here we show, using Pt(111)-vicinal surfaces and in situ electrochemical scanning tunnelling microscopy, that this anomalous behaviour at high step densities has a structural origin and is attributed to the bunching of closely spaced steps. While Pt(554) presents parallel single steps and terrace widths that correspond to its nominal, expected value, most steps on Pt(553) are bunched. Our findings challenge the common assumption in electrochemistry that all stepped surfaces are composed of homogeneously spaced steps of monoatomic height and can successfully explain the anomalous trends documented in the literature linking step density to both activity and potential of zero total charge. The electrocatalytic activity of metal catalysts commonly exhibits a positive linear correlation with the presence of steps, but this dependency breaks down for Pt catalysts with high step densities. Now, using in situ electrochemical scanning tunnelling microscopy, it is shown that this is due to the bunching of closely spaced steps, forming double and triple steps.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"7 11","pages":"1165-1172"},"PeriodicalIF":42.8000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Step bunching instability and its effects in electrocatalysis on platinum surfaces\",\"authors\":\"Francesc Valls Mascaró, Marc T. M. Koper, Marcel J. Rost\",\"doi\":\"10.1038/s41929-024-01232-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The atomic-scale surface structure plays a major role in the electrochemical behaviour of a catalyst. The electrocatalytic activity towards many relevant reactions, such as the oxygen reduction reaction on platinum, exhibits a linear dependency with the number of steps until this linear scaling breaks down at high step densities. Here we show, using Pt(111)-vicinal surfaces and in situ electrochemical scanning tunnelling microscopy, that this anomalous behaviour at high step densities has a structural origin and is attributed to the bunching of closely spaced steps. While Pt(554) presents parallel single steps and terrace widths that correspond to its nominal, expected value, most steps on Pt(553) are bunched. Our findings challenge the common assumption in electrochemistry that all stepped surfaces are composed of homogeneously spaced steps of monoatomic height and can successfully explain the anomalous trends documented in the literature linking step density to both activity and potential of zero total charge. The electrocatalytic activity of metal catalysts commonly exhibits a positive linear correlation with the presence of steps, but this dependency breaks down for Pt catalysts with high step densities. Now, using in situ electrochemical scanning tunnelling microscopy, it is shown that this is due to the bunching of closely spaced steps, forming double and triple steps.\",\"PeriodicalId\":18845,\"journal\":{\"name\":\"Nature Catalysis\",\"volume\":\"7 11\",\"pages\":\"1165-1172\"},\"PeriodicalIF\":42.8000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Catalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.nature.com/articles/s41929-024-01232-2\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.nature.com/articles/s41929-024-01232-2","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

原子尺度的表面结构对催化剂的电化学行为起着重要作用。许多相关反应(如铂上的氧还原反应)的电催化活性与阶跃数呈线性关系,直到高阶跃密度时这种线性比例关系才会打破。在这里,我们利用铂(111)的二维表面和原位电化学扫描隧道显微镜来证明,这种在高阶次密度下的反常行为是由结构引起的,并归因于紧密间隔的阶次串联。铂(554)呈现平行的单一阶梯,阶梯宽度符合其标称的预期值,而铂(553)上的大多数阶梯是成串的。我们的发现挑战了电化学中所有阶梯表面都是由单原子高度的均匀间隔阶梯组成的普遍假设,并能成功解释文献中记载的将阶梯密度与活性和零总电荷电位联系起来的异常趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Step bunching instability and its effects in electrocatalysis on platinum surfaces
The atomic-scale surface structure plays a major role in the electrochemical behaviour of a catalyst. The electrocatalytic activity towards many relevant reactions, such as the oxygen reduction reaction on platinum, exhibits a linear dependency with the number of steps until this linear scaling breaks down at high step densities. Here we show, using Pt(111)-vicinal surfaces and in situ electrochemical scanning tunnelling microscopy, that this anomalous behaviour at high step densities has a structural origin and is attributed to the bunching of closely spaced steps. While Pt(554) presents parallel single steps and terrace widths that correspond to its nominal, expected value, most steps on Pt(553) are bunched. Our findings challenge the common assumption in electrochemistry that all stepped surfaces are composed of homogeneously spaced steps of monoatomic height and can successfully explain the anomalous trends documented in the literature linking step density to both activity and potential of zero total charge. The electrocatalytic activity of metal catalysts commonly exhibits a positive linear correlation with the presence of steps, but this dependency breaks down for Pt catalysts with high step densities. Now, using in situ electrochemical scanning tunnelling microscopy, it is shown that this is due to the bunching of closely spaced steps, forming double and triple steps.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Catalysis
Nature Catalysis Chemical Engineering-Bioengineering
CiteScore
52.10
自引率
1.10%
发文量
140
期刊介绍: Nature Catalysis serves as a platform for researchers across chemistry and related fields, focusing on homogeneous catalysis, heterogeneous catalysis, and biocatalysts, encompassing both fundamental and applied studies. With a particular emphasis on advancing sustainable industries and processes, the journal provides comprehensive coverage of catalysis research, appealing to scientists, engineers, and researchers in academia and industry. Maintaining the high standards of the Nature brand, Nature Catalysis boasts a dedicated team of professional editors, rigorous peer-review processes, and swift publication times, ensuring editorial independence and quality. The journal publishes work spanning heterogeneous catalysis, homogeneous catalysis, and biocatalysis, covering areas such as catalytic synthesis, mechanisms, characterization, computational studies, nanoparticle catalysis, electrocatalysis, photocatalysis, environmental catalysis, asymmetric catalysis, and various forms of organocatalysis.
期刊最新文献
Face to phase Surface (dis)order sleuthing Coacervation-enhanced peptide catalysis An enantioselective HAT for diols Effective anions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1