Cheng Zhou, Mostafa Torka Beydokhti, Fatima Rammal, Parveen Kumar, Maxime Lacroix, Walter Vermeiren, Michiel Dusselier, Yuhe Liao, Bert F. Sels
{"title":"Proximity-independent acid–base synergy in a solid ZrOxHy catalyst for amine regeneration in post-combustion CO2 capture","authors":"Cheng Zhou, Mostafa Torka Beydokhti, Fatima Rammal, Parveen Kumar, Maxime Lacroix, Walter Vermeiren, Michiel Dusselier, Yuhe Liao, Bert F. Sels","doi":"10.1038/s41929-025-01307-8","DOIUrl":null,"url":null,"abstract":"<p>Post-combustion CO<sub>2</sub> capture with amines offers an almost ready-to-use capture technology to assist in the transition towards net-zero carbon emission. However, the technology suffers from a high regeneration cost due to the high process temperatures involved. Utilization of catalysts in the regeneration process was reported to be an elegant solution to lower process temperatures while maintaining high reaction kinetics. Earlier studies were performed under batch conditions and therefore lack practical validation, and a deeper mechanistic understanding of the catalysis is also missing. This study introduces a practical-to-synthesize, highly efficient, stable and recyclable ZrO<sub><i>x</i></sub>H<sub><i>y</i></sub> solid catalyst, showing high catalytic CO<sub>2</sub> desorption rates for most common aqueous amine solutions. Kinetic and ex situ/in situ spectroscopic data reveal a proximity-independent acid–base synergistic mechanism between two catalytic cycles. The approach was validated in a fixed-bed continuous reactor, demonstrating sensible contact time shortening (up to 85%), suggesting considerable potential savings in regeneration energy, reactor construction and amine solvent cost.</p><figure></figure>","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"34 1","pages":""},"PeriodicalIF":42.8000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Catalysis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1038/s41929-025-01307-8","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Post-combustion CO2 capture with amines offers an almost ready-to-use capture technology to assist in the transition towards net-zero carbon emission. However, the technology suffers from a high regeneration cost due to the high process temperatures involved. Utilization of catalysts in the regeneration process was reported to be an elegant solution to lower process temperatures while maintaining high reaction kinetics. Earlier studies were performed under batch conditions and therefore lack practical validation, and a deeper mechanistic understanding of the catalysis is also missing. This study introduces a practical-to-synthesize, highly efficient, stable and recyclable ZrOxHy solid catalyst, showing high catalytic CO2 desorption rates for most common aqueous amine solutions. Kinetic and ex situ/in situ spectroscopic data reveal a proximity-independent acid–base synergistic mechanism between two catalytic cycles. The approach was validated in a fixed-bed continuous reactor, demonstrating sensible contact time shortening (up to 85%), suggesting considerable potential savings in regeneration energy, reactor construction and amine solvent cost.
期刊介绍:
Nature Catalysis serves as a platform for researchers across chemistry and related fields, focusing on homogeneous catalysis, heterogeneous catalysis, and biocatalysts, encompassing both fundamental and applied studies. With a particular emphasis on advancing sustainable industries and processes, the journal provides comprehensive coverage of catalysis research, appealing to scientists, engineers, and researchers in academia and industry.
Maintaining the high standards of the Nature brand, Nature Catalysis boasts a dedicated team of professional editors, rigorous peer-review processes, and swift publication times, ensuring editorial independence and quality. The journal publishes work spanning heterogeneous catalysis, homogeneous catalysis, and biocatalysis, covering areas such as catalytic synthesis, mechanisms, characterization, computational studies, nanoparticle catalysis, electrocatalysis, photocatalysis, environmental catalysis, asymmetric catalysis, and various forms of organocatalysis.