{"title":"用于生物力学分析的多传感器融合:利用计算方法评估自给式呼吸器与消防员之间的动态交互作用。","authors":"Bing Xie, Junxia Zhang","doi":"10.1080/10255842.2024.2410222","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding the complex three-dimensional (3D) dynamic interactions between self-contained breathing apparatus (SCBA) and the human torso is critical to assessing potential impacts on firefighter health and informing equipment design. This study employed a multi-inertial sensor fusion technology to quantify these interactions. Six volunteer firefighters performed walking and running experiments on a treadmill while wearing the SCBA. Calculations of interaction forces and moments from the multi-inertial sensor technology were validated against a 3D motion capture system. The predicted interaction forces and moments showed good agreement with the measured data, especially for the forces (normal and lateral) and moments (x- and z-direction components) with relative root mean square errors (RMSEs) below 9.4%, 7.7%, 7.7%, and 7.8%, respectively. Peak pack force reached up to 150 N, significantly exceeding the SCBA's intrinsic weight during SCBA carriage. The proposed multi-inertial sensor fusion technique can effectively evaluate the 3D dynamic interactions and provide a scientific basis for health monitoring and ergonomic optimization of SCBA systems for firefighters.</p>","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-sensor fusion for biomechanical analysis: evaluation of dynamic interactions between self-contained breathing apparatus and firefighter using computational methods.\",\"authors\":\"Bing Xie, Junxia Zhang\",\"doi\":\"10.1080/10255842.2024.2410222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Understanding the complex three-dimensional (3D) dynamic interactions between self-contained breathing apparatus (SCBA) and the human torso is critical to assessing potential impacts on firefighter health and informing equipment design. This study employed a multi-inertial sensor fusion technology to quantify these interactions. Six volunteer firefighters performed walking and running experiments on a treadmill while wearing the SCBA. Calculations of interaction forces and moments from the multi-inertial sensor technology were validated against a 3D motion capture system. The predicted interaction forces and moments showed good agreement with the measured data, especially for the forces (normal and lateral) and moments (x- and z-direction components) with relative root mean square errors (RMSEs) below 9.4%, 7.7%, 7.7%, and 7.8%, respectively. Peak pack force reached up to 150 N, significantly exceeding the SCBA's intrinsic weight during SCBA carriage. The proposed multi-inertial sensor fusion technique can effectively evaluate the 3D dynamic interactions and provide a scientific basis for health monitoring and ergonomic optimization of SCBA systems for firefighters.</p>\",\"PeriodicalId\":50640,\"journal\":{\"name\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10255842.2024.2410222\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10255842.2024.2410222","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Multi-sensor fusion for biomechanical analysis: evaluation of dynamic interactions between self-contained breathing apparatus and firefighter using computational methods.
Understanding the complex three-dimensional (3D) dynamic interactions between self-contained breathing apparatus (SCBA) and the human torso is critical to assessing potential impacts on firefighter health and informing equipment design. This study employed a multi-inertial sensor fusion technology to quantify these interactions. Six volunteer firefighters performed walking and running experiments on a treadmill while wearing the SCBA. Calculations of interaction forces and moments from the multi-inertial sensor technology were validated against a 3D motion capture system. The predicted interaction forces and moments showed good agreement with the measured data, especially for the forces (normal and lateral) and moments (x- and z-direction components) with relative root mean square errors (RMSEs) below 9.4%, 7.7%, 7.7%, and 7.8%, respectively. Peak pack force reached up to 150 N, significantly exceeding the SCBA's intrinsic weight during SCBA carriage. The proposed multi-inertial sensor fusion technique can effectively evaluate the 3D dynamic interactions and provide a scientific basis for health monitoring and ergonomic optimization of SCBA systems for firefighters.
期刊介绍:
The primary aims of Computer Methods in Biomechanics and Biomedical Engineering are to provide a means of communicating the advances being made in the areas of biomechanics and biomedical engineering and to stimulate interest in the continually emerging computer based technologies which are being applied in these multidisciplinary subjects. Computer Methods in Biomechanics and Biomedical Engineering will also provide a focus for the importance of integrating the disciplines of engineering with medical technology and clinical expertise. Such integration will have a major impact on health care in the future.