电针通过KAT3B介导的ACSL4琥珀酰化抑制铁蛋白沉积以缓解脑缺血再灌注损伤

IF 3.1 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Applied Biochemistry and Biotechnology Pub Date : 2024-09-28 DOI:10.1007/s12010-024-05063-6
Fang Liu, Ying Chen, Kangbai Huang
{"title":"电针通过KAT3B介导的ACSL4琥珀酰化抑制铁蛋白沉积以缓解脑缺血再灌注损伤","authors":"Fang Liu, Ying Chen, Kangbai Huang","doi":"10.1007/s12010-024-05063-6","DOIUrl":null,"url":null,"abstract":"<p><p>Electro-acupuncture (EA) is identified as an effective therapeutic method for cerebral ischemia/reperfusion injury (CIRI), which is a combination of Chinese traditional acupuncture and modern electro-therapy. However, the downstream molecular mechanisms of EA in CIRI process remains largely unknown. The purpose of the present study is to unveil the therapeutic effect of EA on CIRI rat and its regulatory mechanisms. At first, we constructed middle cerebral artery occlusion (MCAO) rat models and then treated them with EA to observe the pathological changes. The results indicated that EA decreased the infarct volume (43.81 ± 3.34 vs 15.96 ± 2.22) and the neurological scores (3.33 ± 0.52 vs 1.67 ± 0.52) and suppressed the apoptosis in MCAO model rats. For ferroptosis analysis, EA decreased the Fe2 + (0.08 ± 0.01 vs 0.06 ± 0.01), MDA (36.61 ± 4.29 vs 21.72 ± 2.79), and LPS (5.25 ± 0.69 vs 2.89 ± 0.42) contents and increased the GSH (4.94 ± 1.04 vs 11.69 ± 1.88) content in MCAO model rats. We next detected whether succinylation mediated EA-treated I/R injury. According to immunoprecipitation and western blot analysis, EA treatment could lower both levels of succinylation and KAT3B in MCAO rats. Moreover, mechanism experiments unveiled that KAT3B promoted the succinylation of the ferroptosis-related protein ACSL4 at K661 site and thus stabilizing ACSL4. Finally, EA-treated MCAO rats were further injected with KAT3B expression vector. The results showed that KAT3B overexpression increased the infarct volume (31.44 ± 3.92 vs 7.94 ± 2.84) and the neurological scores (2.67 ± 0.51 vs 1.33 ± 0.51) and promoted the apoptosis in EA treated MCAO model rats. For ferroptosis analysis, KAT3B overexpression increased the Fe2 + (0.08 ± 0.01 vs 0.05 ± 0.01), MDA (29.24 ± 4.30 vs 22.06 ± 1.89), and LPO (5.07 ± 0.45 vs 2.88 ± 0.49) contents and decreased the GSH (7.86 ± 1.09 vs 11.06 ± 1.76) content in EA treated MCAO model rats. Collectively, our study demonstrates that EA plays a therapeutic role in CIRI through suppressing KAT3B-induced stabilization of ACSL4 to inhibit ferroptosis. These findings contribute to our understanding of the molecular mechanisms underlying the neuroprotective effects of EA and open new avenues for the development of innovative therapeutic strategies for CIRI.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electro-acupuncture Suppresses Ferroptosis to Alleviate Cerebral Ischemia-Reperfusion Injury Through KAT3B-Mediated Succinylation of ACSL4.\",\"authors\":\"Fang Liu, Ying Chen, Kangbai Huang\",\"doi\":\"10.1007/s12010-024-05063-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Electro-acupuncture (EA) is identified as an effective therapeutic method for cerebral ischemia/reperfusion injury (CIRI), which is a combination of Chinese traditional acupuncture and modern electro-therapy. However, the downstream molecular mechanisms of EA in CIRI process remains largely unknown. The purpose of the present study is to unveil the therapeutic effect of EA on CIRI rat and its regulatory mechanisms. At first, we constructed middle cerebral artery occlusion (MCAO) rat models and then treated them with EA to observe the pathological changes. The results indicated that EA decreased the infarct volume (43.81 ± 3.34 vs 15.96 ± 2.22) and the neurological scores (3.33 ± 0.52 vs 1.67 ± 0.52) and suppressed the apoptosis in MCAO model rats. For ferroptosis analysis, EA decreased the Fe2 + (0.08 ± 0.01 vs 0.06 ± 0.01), MDA (36.61 ± 4.29 vs 21.72 ± 2.79), and LPS (5.25 ± 0.69 vs 2.89 ± 0.42) contents and increased the GSH (4.94 ± 1.04 vs 11.69 ± 1.88) content in MCAO model rats. We next detected whether succinylation mediated EA-treated I/R injury. According to immunoprecipitation and western blot analysis, EA treatment could lower both levels of succinylation and KAT3B in MCAO rats. Moreover, mechanism experiments unveiled that KAT3B promoted the succinylation of the ferroptosis-related protein ACSL4 at K661 site and thus stabilizing ACSL4. Finally, EA-treated MCAO rats were further injected with KAT3B expression vector. The results showed that KAT3B overexpression increased the infarct volume (31.44 ± 3.92 vs 7.94 ± 2.84) and the neurological scores (2.67 ± 0.51 vs 1.33 ± 0.51) and promoted the apoptosis in EA treated MCAO model rats. For ferroptosis analysis, KAT3B overexpression increased the Fe2 + (0.08 ± 0.01 vs 0.05 ± 0.01), MDA (29.24 ± 4.30 vs 22.06 ± 1.89), and LPO (5.07 ± 0.45 vs 2.88 ± 0.49) contents and decreased the GSH (7.86 ± 1.09 vs 11.06 ± 1.76) content in EA treated MCAO model rats. Collectively, our study demonstrates that EA plays a therapeutic role in CIRI through suppressing KAT3B-induced stabilization of ACSL4 to inhibit ferroptosis. These findings contribute to our understanding of the molecular mechanisms underlying the neuroprotective effects of EA and open new avenues for the development of innovative therapeutic strategies for CIRI.</p>\",\"PeriodicalId\":465,\"journal\":{\"name\":\"Applied Biochemistry and Biotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Biochemistry and Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12010-024-05063-6\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Biochemistry and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12010-024-05063-6","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

电针(EA)是中国传统针灸与现代电疗相结合的一种治疗脑缺血再灌注损伤(CIRI)的有效方法。然而,EA在CIRI过程中的下游分子机制仍是一个未知数。本研究旨在揭示EA对CIRI大鼠的治疗作用及其调控机制。首先,我们构建了大脑中动脉闭塞(MCAO)大鼠模型,然后用EA治疗,观察其病理变化。结果表明,EA能减少MCAO模型大鼠的梗死体积(43.81 ± 3.34 vs 15.96 ± 2.22)和神经系统评分(3.33 ± 0.52 vs 1.67 ± 0.52),并抑制细胞凋亡。在铁变态反应分析中,EA降低了MCAO模型大鼠的Fe2 +(0.08±0.01 vs 0.06±0.01)、MDA(36.61±4.29 vs 21.72±2.79)和LPS(5.25±0.69 vs 2.89±0.42)含量,增加了GSH(4.94±1.04 vs 11.69±1.88)含量。我们接下来检测了琥珀酰化是否介导了 EA 处理的 I/R 损伤。根据免疫沉淀和 Western 印迹分析,EA 治疗可降低 MCAO 大鼠体内琥珀酰化和 KAT3B 的水平。此外,机制实验还发现,KAT3B能促进铁突变相关蛋白ACSL4在K661位点的琥珀酰化,从而稳定ACSL4。最后,给经EA处理的MCAO大鼠进一步注射KAT3B表达载体。结果显示,KAT3B的过表达增加了EA处理的MCAO模型大鼠的梗死体积(31.44 ± 3.92 vs 7.94 ± 2.84)和神经评分(2.67 ± 0.51 vs 1.33 ± 0.51),并促进了细胞凋亡。在铁变态反应分析中,KAT3B的过表达增加了EA处理的MCAO模型大鼠的Fe2 + (0.08 ± 0.01 vs 0.05 ± 0.01)、MDA (29.24 ± 4.30 vs 22.06 ± 1.89)和LPO (5.07 ± 0.45 vs 2.88 ± 0.49)含量,降低了GSH (7.86 ± 1.09 vs 11.06 ± 1.76)含量。总之,我们的研究表明,EA通过抑制KAT3B诱导的ACSL4稳定化来抑制铁氧化,从而在CIRI中发挥治疗作用。这些发现有助于我们了解 EA 神经保护作用的分子机制,并为开发 CIRI 的创新治疗策略开辟了新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Electro-acupuncture Suppresses Ferroptosis to Alleviate Cerebral Ischemia-Reperfusion Injury Through KAT3B-Mediated Succinylation of ACSL4.

Electro-acupuncture (EA) is identified as an effective therapeutic method for cerebral ischemia/reperfusion injury (CIRI), which is a combination of Chinese traditional acupuncture and modern electro-therapy. However, the downstream molecular mechanisms of EA in CIRI process remains largely unknown. The purpose of the present study is to unveil the therapeutic effect of EA on CIRI rat and its regulatory mechanisms. At first, we constructed middle cerebral artery occlusion (MCAO) rat models and then treated them with EA to observe the pathological changes. The results indicated that EA decreased the infarct volume (43.81 ± 3.34 vs 15.96 ± 2.22) and the neurological scores (3.33 ± 0.52 vs 1.67 ± 0.52) and suppressed the apoptosis in MCAO model rats. For ferroptosis analysis, EA decreased the Fe2 + (0.08 ± 0.01 vs 0.06 ± 0.01), MDA (36.61 ± 4.29 vs 21.72 ± 2.79), and LPS (5.25 ± 0.69 vs 2.89 ± 0.42) contents and increased the GSH (4.94 ± 1.04 vs 11.69 ± 1.88) content in MCAO model rats. We next detected whether succinylation mediated EA-treated I/R injury. According to immunoprecipitation and western blot analysis, EA treatment could lower both levels of succinylation and KAT3B in MCAO rats. Moreover, mechanism experiments unveiled that KAT3B promoted the succinylation of the ferroptosis-related protein ACSL4 at K661 site and thus stabilizing ACSL4. Finally, EA-treated MCAO rats were further injected with KAT3B expression vector. The results showed that KAT3B overexpression increased the infarct volume (31.44 ± 3.92 vs 7.94 ± 2.84) and the neurological scores (2.67 ± 0.51 vs 1.33 ± 0.51) and promoted the apoptosis in EA treated MCAO model rats. For ferroptosis analysis, KAT3B overexpression increased the Fe2 + (0.08 ± 0.01 vs 0.05 ± 0.01), MDA (29.24 ± 4.30 vs 22.06 ± 1.89), and LPO (5.07 ± 0.45 vs 2.88 ± 0.49) contents and decreased the GSH (7.86 ± 1.09 vs 11.06 ± 1.76) content in EA treated MCAO model rats. Collectively, our study demonstrates that EA plays a therapeutic role in CIRI through suppressing KAT3B-induced stabilization of ACSL4 to inhibit ferroptosis. These findings contribute to our understanding of the molecular mechanisms underlying the neuroprotective effects of EA and open new avenues for the development of innovative therapeutic strategies for CIRI.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Biochemistry and Biotechnology
Applied Biochemistry and Biotechnology 工程技术-生化与分子生物学
CiteScore
5.70
自引率
6.70%
发文量
460
审稿时长
5.3 months
期刊介绍: This journal is devoted to publishing the highest quality innovative papers in the fields of biochemistry and biotechnology. The typical focus of the journal is to report applications of novel scientific and technological breakthroughs, as well as technological subjects that are still in the proof-of-concept stage. Applied Biochemistry and Biotechnology provides a forum for case studies and practical concepts of biotechnology, utilization, including controls, statistical data analysis, problem descriptions unique to a particular application, and bioprocess economic analyses. The journal publishes reviews deemed of interest to readers, as well as book reviews, meeting and symposia notices, and news items relating to biotechnology in both the industrial and academic communities. In addition, Applied Biochemistry and Biotechnology often publishes lists of patents and publications of special interest to readers.
期刊最新文献
Tripartite Motif Containing 71 Suppresses Tumor Growth by Down-Regulating eIF5A2 Expression in Laryngeal Squamous Cell Carcinoma. Cold Plasma Treatment Facilitated the Conversion of Lignin-Derived Aldehyde for Pseudomonas putida. E2F1 Promotes the Occurrence of Head and Neck Squamous Cell Carcinoma and Serves as a Prognostic Biomarker. Field-Based cDNA-Biosensor for Accurate Detection of Canine Distemper Virus in Tissue Samples. Activation of Cryptic Secondary Metabolite Biosynthesis in Tobacco BY-2 Suspension Cells by Epigenetic Modifiers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1