{"title":"竞争性 SPR 追踪器测定法,用于研究结合解离速率常数极慢的生物分子相互作用。","authors":"Aye Myat Myat Thinn , Wei Wang , Qing Chen","doi":"10.1016/j.ab.2024.115679","DOIUrl":null,"url":null,"abstract":"<div><div>Binding kinetics of drug and its target protein is crucial for the efficacy and safety of the drug. Using surface plasmon resonance (SPR) technology, we performed a competitive SPR chaser assay, a method to study biomolecular interactions with very slow dissociation rate constants (<em>k</em><sub><em>d</em></sub> < 1E-4 s<sup>−1</sup>). This report described the principle and the experimental setup of the chaser assay, which involves using a competitive probe (chaser) to detect changes in target occupancy by a test molecule over time. We demonstrated the applicability of the chaser assay for both small and large molecules and compared the results with conventional SPR kinetic analysis and other methods. We suggest that the chaser assay is a useful and robust technique to characterize very tight biomolecular interactions, and that it can also be used to study cooperativity in ternary complex formation.</div></div>","PeriodicalId":7830,"journal":{"name":"Analytical biochemistry","volume":"696 ","pages":"Article 115679"},"PeriodicalIF":2.6000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Competitive SPR chaser assay to study biomolecular interactions with very slow binding dissociation rate constant\",\"authors\":\"Aye Myat Myat Thinn , Wei Wang , Qing Chen\",\"doi\":\"10.1016/j.ab.2024.115679\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Binding kinetics of drug and its target protein is crucial for the efficacy and safety of the drug. Using surface plasmon resonance (SPR) technology, we performed a competitive SPR chaser assay, a method to study biomolecular interactions with very slow dissociation rate constants (<em>k</em><sub><em>d</em></sub> < 1E-4 s<sup>−1</sup>). This report described the principle and the experimental setup of the chaser assay, which involves using a competitive probe (chaser) to detect changes in target occupancy by a test molecule over time. We demonstrated the applicability of the chaser assay for both small and large molecules and compared the results with conventional SPR kinetic analysis and other methods. We suggest that the chaser assay is a useful and robust technique to characterize very tight biomolecular interactions, and that it can also be used to study cooperativity in ternary complex formation.</div></div>\",\"PeriodicalId\":7830,\"journal\":{\"name\":\"Analytical biochemistry\",\"volume\":\"696 \",\"pages\":\"Article 115679\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0003269724002239\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003269724002239","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Competitive SPR chaser assay to study biomolecular interactions with very slow binding dissociation rate constant
Binding kinetics of drug and its target protein is crucial for the efficacy and safety of the drug. Using surface plasmon resonance (SPR) technology, we performed a competitive SPR chaser assay, a method to study biomolecular interactions with very slow dissociation rate constants (kd < 1E-4 s−1). This report described the principle and the experimental setup of the chaser assay, which involves using a competitive probe (chaser) to detect changes in target occupancy by a test molecule over time. We demonstrated the applicability of the chaser assay for both small and large molecules and compared the results with conventional SPR kinetic analysis and other methods. We suggest that the chaser assay is a useful and robust technique to characterize very tight biomolecular interactions, and that it can also be used to study cooperativity in ternary complex formation.
期刊介绍:
The journal''s title Analytical Biochemistry: Methods in the Biological Sciences declares its broad scope: methods for the basic biological sciences that include biochemistry, molecular genetics, cell biology, proteomics, immunology, bioinformatics and wherever the frontiers of research take the field.
The emphasis is on methods from the strictly analytical to the more preparative that would include novel approaches to protein purification as well as improvements in cell and organ culture. The actual techniques are equally inclusive ranging from aptamers to zymology.
The journal has been particularly active in:
-Analytical techniques for biological molecules-
Aptamer selection and utilization-
Biosensors-
Chromatography-
Cloning, sequencing and mutagenesis-
Electrochemical methods-
Electrophoresis-
Enzyme characterization methods-
Immunological approaches-
Mass spectrometry of proteins and nucleic acids-
Metabolomics-
Nano level techniques-
Optical spectroscopy in all its forms.
The journal is reluctant to include most drug and strictly clinical studies as there are more suitable publication platforms for these types of papers.