结垢面板的水动力摩擦性能:不同涂层类型的比较研究。

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-10-01 DOI:10.1080/08927014.2024.2404960
Irma Yeginbayeva, Aleksei Berdiuzhenko
{"title":"结垢面板的水动力摩擦性能:不同涂层类型的比较研究。","authors":"Irma Yeginbayeva, Aleksei Berdiuzhenko","doi":"10.1080/08927014.2024.2404960","DOIUrl":null,"url":null,"abstract":"<p><p>This research study delves into the hydrodynamic frictional characteristics of fouled panels coated with different types of coatings, investigating how fouling coverage and surface roughness influence drag. The investigation incorporates data on the overall percentage coverage of fouling, as well as roughness measurements obtained through a 3D profilometer. Drag data collected from a flowcell simulation of real-world flow conditions complements these measurements. Notably, the determination of the level of fouling leverages the capabilities of CIE L*a*b as an image analysis method, focusing on the overall coverage rather than individual fouling species. The objective is to illustrate how fouled panels perform under varying flow and coating conditions compared to their clean counterparts. Furthermore, the paper proposes a roughness scaling approach that considers both the percentage coverage and measured areal roughness for each coating type, encompassing both fouled and unfouled areas. This approach provides valuable insights into the combined effects of fouling and surface roughness on hydrodynamic performance, enhancing our understanding of the intricate interplay between these factors.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrodynamic frictional performance of fouled panels: a comparative study of different coating types.\",\"authors\":\"Irma Yeginbayeva, Aleksei Berdiuzhenko\",\"doi\":\"10.1080/08927014.2024.2404960\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This research study delves into the hydrodynamic frictional characteristics of fouled panels coated with different types of coatings, investigating how fouling coverage and surface roughness influence drag. The investigation incorporates data on the overall percentage coverage of fouling, as well as roughness measurements obtained through a 3D profilometer. Drag data collected from a flowcell simulation of real-world flow conditions complements these measurements. Notably, the determination of the level of fouling leverages the capabilities of CIE L*a*b as an image analysis method, focusing on the overall coverage rather than individual fouling species. The objective is to illustrate how fouled panels perform under varying flow and coating conditions compared to their clean counterparts. Furthermore, the paper proposes a roughness scaling approach that considers both the percentage coverage and measured areal roughness for each coating type, encompassing both fouled and unfouled areas. This approach provides valuable insights into the combined effects of fouling and surface roughness on hydrodynamic performance, enhancing our understanding of the intricate interplay between these factors.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/08927014.2024.2404960\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/08927014.2024.2404960","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

这项研究深入探讨了涂有不同类型涂层的污垢面板的流体动力摩擦特性,调查污垢覆盖率和表面粗糙度如何影响阻力。调查包含污垢总体覆盖率数据以及通过三维轮廓仪获得的粗糙度测量数据。通过模拟真实世界流动条件的流动池收集的阻力数据对这些测量结果进行了补充。值得注意的是,污垢程度的确定利用了 CIE L*a*b 作为图像分析方法的功能,重点关注整体覆盖范围而非单个污垢种类。其目的是说明在不同的流动和涂层条件下,与清洁的面板相比,结垢面板的性能如何。此外,本文还提出了一种粗糙度缩放方法,该方法同时考虑了每种涂层类型的覆盖百分比和测量的面积粗糙度,包括污垢和未污垢区域。这种方法为了解污垢和表面粗糙度对流体力学性能的综合影响提供了宝贵的见解,加深了我们对这些因素之间错综复杂的相互作用的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hydrodynamic frictional performance of fouled panels: a comparative study of different coating types.

This research study delves into the hydrodynamic frictional characteristics of fouled panels coated with different types of coatings, investigating how fouling coverage and surface roughness influence drag. The investigation incorporates data on the overall percentage coverage of fouling, as well as roughness measurements obtained through a 3D profilometer. Drag data collected from a flowcell simulation of real-world flow conditions complements these measurements. Notably, the determination of the level of fouling leverages the capabilities of CIE L*a*b as an image analysis method, focusing on the overall coverage rather than individual fouling species. The objective is to illustrate how fouled panels perform under varying flow and coating conditions compared to their clean counterparts. Furthermore, the paper proposes a roughness scaling approach that considers both the percentage coverage and measured areal roughness for each coating type, encompassing both fouled and unfouled areas. This approach provides valuable insights into the combined effects of fouling and surface roughness on hydrodynamic performance, enhancing our understanding of the intricate interplay between these factors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1