Saeed Ullah, Atta Ullah, Muhammad Waqas, Sobia Ahsan Halim, Imtiaz Khan, Sadeeq Ur Rehman, Magda H Abdellattif, Samreen Soomro, Aliya Ibrar, Hamdy Kashtoh, Ajmal Khan, Ahmed Al-Harrasi
{"title":"通过体外和体内评估探索香豆素-噻唑三唑类药物对 SARS-CoV-2 Spike 蛋白的治疗潜力","authors":"Saeed Ullah, Atta Ullah, Muhammad Waqas, Sobia Ahsan Halim, Imtiaz Khan, Sadeeq Ur Rehman, Magda H Abdellattif, Samreen Soomro, Aliya Ibrar, Hamdy Kashtoh, Ajmal Khan, Ahmed Al-Harrasi","doi":"10.2174/0109298673323284240911052131","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The pandemic caused by SARS-CoV-2 significantly impacted human life around the globe. Numerous unexpected modifications of the SARS-CoV-2 genome have resulted in the emergence of new types and have caused great concern globally.</p><p><strong>Method: </strong>Inhibitory effects of bioactive phytochemicals derived from natural and synthetic sources are promising for pathogenic viruses. in vitro and in silico techniques were used in the current study to identify novel inhibitors of coumarin clubbed thiazolo[3,2-b][1,2,4]triazoles against the SARS-CoV-2 spike protein.</p><p><strong>Result: </strong>Interestingly, all the tested molecules demonstrated substantial inhibition of spike protein with 91.81-57.90% inhibition. The spike protein was remarkably inhibited by compounds 6k (91.83%), 6j (89.75%), 6m (87.69%),6i (86.60%), 6l (85.40%), 6h (84.70%), 6l (84.70%), 6g (83.40%), 6b (82.60%), 6f (81.90%), while compounds 6d 6a, 6c, and 6e exhibited significant activity against spike protein with 79.60%, 77.10%, 75.30%, and 57.90% inhibition, respectively. The binding mechanism of these novel inhibitors with spike protein was deduced in silico, which reflects that the active molecules firmly bind with the receptor binding domain (RBD) of spike protein, thereby inhibiting its function.</p><p><strong>Conclusion: </strong>The combined in vitro and in silico investigations unfold the therapeutic potential of coumarin-thiazolotriazole scaffolds in the treatment of SARS-CoV-2 infection.</p>","PeriodicalId":10984,"journal":{"name":"Current medicinal chemistry","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the Therapeutic Potential of Coumarin-thiazolotriazole Pharmacophores for SARS-CoV-2 Spike Protein through In-vitro and In-silico Evaluation.\",\"authors\":\"Saeed Ullah, Atta Ullah, Muhammad Waqas, Sobia Ahsan Halim, Imtiaz Khan, Sadeeq Ur Rehman, Magda H Abdellattif, Samreen Soomro, Aliya Ibrar, Hamdy Kashtoh, Ajmal Khan, Ahmed Al-Harrasi\",\"doi\":\"10.2174/0109298673323284240911052131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>The pandemic caused by SARS-CoV-2 significantly impacted human life around the globe. Numerous unexpected modifications of the SARS-CoV-2 genome have resulted in the emergence of new types and have caused great concern globally.</p><p><strong>Method: </strong>Inhibitory effects of bioactive phytochemicals derived from natural and synthetic sources are promising for pathogenic viruses. in vitro and in silico techniques were used in the current study to identify novel inhibitors of coumarin clubbed thiazolo[3,2-b][1,2,4]triazoles against the SARS-CoV-2 spike protein.</p><p><strong>Result: </strong>Interestingly, all the tested molecules demonstrated substantial inhibition of spike protein with 91.81-57.90% inhibition. The spike protein was remarkably inhibited by compounds 6k (91.83%), 6j (89.75%), 6m (87.69%),6i (86.60%), 6l (85.40%), 6h (84.70%), 6l (84.70%), 6g (83.40%), 6b (82.60%), 6f (81.90%), while compounds 6d 6a, 6c, and 6e exhibited significant activity against spike protein with 79.60%, 77.10%, 75.30%, and 57.90% inhibition, respectively. The binding mechanism of these novel inhibitors with spike protein was deduced in silico, which reflects that the active molecules firmly bind with the receptor binding domain (RBD) of spike protein, thereby inhibiting its function.</p><p><strong>Conclusion: </strong>The combined in vitro and in silico investigations unfold the therapeutic potential of coumarin-thiazolotriazole scaffolds in the treatment of SARS-CoV-2 infection.</p>\",\"PeriodicalId\":10984,\"journal\":{\"name\":\"Current medicinal chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current medicinal chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0109298673323284240911052131\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0109298673323284240911052131","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Exploring the Therapeutic Potential of Coumarin-thiazolotriazole Pharmacophores for SARS-CoV-2 Spike Protein through In-vitro and In-silico Evaluation.
Introduction: The pandemic caused by SARS-CoV-2 significantly impacted human life around the globe. Numerous unexpected modifications of the SARS-CoV-2 genome have resulted in the emergence of new types and have caused great concern globally.
Method: Inhibitory effects of bioactive phytochemicals derived from natural and synthetic sources are promising for pathogenic viruses. in vitro and in silico techniques were used in the current study to identify novel inhibitors of coumarin clubbed thiazolo[3,2-b][1,2,4]triazoles against the SARS-CoV-2 spike protein.
Result: Interestingly, all the tested molecules demonstrated substantial inhibition of spike protein with 91.81-57.90% inhibition. The spike protein was remarkably inhibited by compounds 6k (91.83%), 6j (89.75%), 6m (87.69%),6i (86.60%), 6l (85.40%), 6h (84.70%), 6l (84.70%), 6g (83.40%), 6b (82.60%), 6f (81.90%), while compounds 6d 6a, 6c, and 6e exhibited significant activity against spike protein with 79.60%, 77.10%, 75.30%, and 57.90% inhibition, respectively. The binding mechanism of these novel inhibitors with spike protein was deduced in silico, which reflects that the active molecules firmly bind with the receptor binding domain (RBD) of spike protein, thereby inhibiting its function.
Conclusion: The combined in vitro and in silico investigations unfold the therapeutic potential of coumarin-thiazolotriazole scaffolds in the treatment of SARS-CoV-2 infection.
期刊介绍:
Aims & Scope
Current Medicinal Chemistry covers all the latest and outstanding developments in medicinal chemistry and rational drug design. Each issue contains a series of timely in-depth reviews and guest edited thematic issues written by leaders in the field covering a range of the current topics in medicinal chemistry. The journal also publishes reviews on recent patents. Current Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments.