Ji Zhou, Sebastian Hormigo, Muhammad S Sajid, Manuel A Castro-Alamancos
{"title":"神经核在信号回避动作中的作用","authors":"Ji Zhou, Sebastian Hormigo, Muhammad S Sajid, Manuel A Castro-Alamancos","doi":"10.1523/ENEURO.0314-24.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Animals, humans included, navigate their environments guided by sensory cues, responding adaptively to potential dangers and rewards. Avoidance behaviors serve as adaptive strategies in the face of signaled threats, but the neural mechanisms orchestrating these behaviors remain elusive. Current circuit models of avoidance behaviors indicate that the nucleus accumbens (NAc) in the ventral striatum plays a key role in signaled avoidance behaviors, but the nature of this engagement is unclear. Evolving perspectives propose the NAc as a pivotal hub for action selection, integrating cognitive and affective information to heighten the efficiency of both appetitive and aversive motivated behaviors. To unravel the engagement of the NAc during active and passive avoidance, we used calcium imaging fiber photometry to examine NAc GABAergic neuron activity in <i>ad libitum</i> moving mice performing avoidance behaviors. We then probed the functional significance of NAc neurons using optogenetics and genetically targeted or electrolytic lesions. We found that NAc neurons code contraversive orienting movements and avoidance actions. However, direct optogenetic inhibition or lesions of NAc neurons did not impair active or passive avoidance behaviors, challenging the notion of their purported pivotal role in adaptive avoidance. The findings emphasize that while the NAc encodes avoidance movements, it is not required for avoidance behaviors, highlighting the distinction between behavior encoding or representation and mediation or generation.</p>","PeriodicalId":11617,"journal":{"name":"eNeuro","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11613310/pdf/","citationCount":"0","resultStr":"{\"title\":\"Role of the Nucleus Accumbens in Signaled Avoidance Actions.\",\"authors\":\"Ji Zhou, Sebastian Hormigo, Muhammad S Sajid, Manuel A Castro-Alamancos\",\"doi\":\"10.1523/ENEURO.0314-24.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Animals, humans included, navigate their environments guided by sensory cues, responding adaptively to potential dangers and rewards. Avoidance behaviors serve as adaptive strategies in the face of signaled threats, but the neural mechanisms orchestrating these behaviors remain elusive. Current circuit models of avoidance behaviors indicate that the nucleus accumbens (NAc) in the ventral striatum plays a key role in signaled avoidance behaviors, but the nature of this engagement is unclear. Evolving perspectives propose the NAc as a pivotal hub for action selection, integrating cognitive and affective information to heighten the efficiency of both appetitive and aversive motivated behaviors. To unravel the engagement of the NAc during active and passive avoidance, we used calcium imaging fiber photometry to examine NAc GABAergic neuron activity in <i>ad libitum</i> moving mice performing avoidance behaviors. We then probed the functional significance of NAc neurons using optogenetics and genetically targeted or electrolytic lesions. We found that NAc neurons code contraversive orienting movements and avoidance actions. However, direct optogenetic inhibition or lesions of NAc neurons did not impair active or passive avoidance behaviors, challenging the notion of their purported pivotal role in adaptive avoidance. The findings emphasize that while the NAc encodes avoidance movements, it is not required for avoidance behaviors, highlighting the distinction between behavior encoding or representation and mediation or generation.</p>\",\"PeriodicalId\":11617,\"journal\":{\"name\":\"eNeuro\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11613310/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"eNeuro\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1523/ENEURO.0314-24.2024\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/1 0:00:00\",\"PubModel\":\"Print\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"eNeuro","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1523/ENEURO.0314-24.2024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"Print","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Role of the Nucleus Accumbens in Signaled Avoidance Actions.
Animals, humans included, navigate their environments guided by sensory cues, responding adaptively to potential dangers and rewards. Avoidance behaviors serve as adaptive strategies in the face of signaled threats, but the neural mechanisms orchestrating these behaviors remain elusive. Current circuit models of avoidance behaviors indicate that the nucleus accumbens (NAc) in the ventral striatum plays a key role in signaled avoidance behaviors, but the nature of this engagement is unclear. Evolving perspectives propose the NAc as a pivotal hub for action selection, integrating cognitive and affective information to heighten the efficiency of both appetitive and aversive motivated behaviors. To unravel the engagement of the NAc during active and passive avoidance, we used calcium imaging fiber photometry to examine NAc GABAergic neuron activity in ad libitum moving mice performing avoidance behaviors. We then probed the functional significance of NAc neurons using optogenetics and genetically targeted or electrolytic lesions. We found that NAc neurons code contraversive orienting movements and avoidance actions. However, direct optogenetic inhibition or lesions of NAc neurons did not impair active or passive avoidance behaviors, challenging the notion of their purported pivotal role in adaptive avoidance. The findings emphasize that while the NAc encodes avoidance movements, it is not required for avoidance behaviors, highlighting the distinction between behavior encoding or representation and mediation or generation.
期刊介绍:
An open-access journal from the Society for Neuroscience, eNeuro publishes high-quality, broad-based, peer-reviewed research focused solely on the field of neuroscience. eNeuro embodies an emerging scientific vision that offers a new experience for authors and readers, all in support of the Society’s mission to advance understanding of the brain and nervous system.