Yuting Liu, Chi Dang, Dawei Yin, Ruilin Zheng, Zixu Zhang, Yi Zhou, Jiabao Chen
{"title":"含二茂铁查耳酮的氨基脲席夫碱的合成及其在色氨酸上的检测。","authors":"Yuting Liu, Chi Dang, Dawei Yin, Ruilin Zheng, Zixu Zhang, Yi Zhou, Jiabao Chen","doi":"10.1007/s10895-024-03967-4","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, 1-phenyl-3-ferrocenylenone aminourea Schiff bases were synthesized by a novel method. A multifunctional molecular probe (Probe A) of 1-phenyl-3-ferrocenylenone, carbon-based solid acid, aminourea, and anhydrous ethanol was synthesized by adding them to a vessel at elevated temperatures and refluxing for the synthesis of a multifunctional molecular probe (Probe A) of 1-phenyl-3-ferrocenylenone aminourea Schiff base, and it was found that it recognizes tryptophan (Trp) in solution, and that the catalyst can be reused more than five times after recycling. This method is characterised by low cost, high efficiency, green environment and no waste acid. Fluorescence and UV spectra show that probe A specifically recognizes tryptophan (Trp) without interference by other amino acids or pH and time does not affect it within 45 min. The lowest limit of detection for Trp was 1.307 × 10<sup>- 4</sup> mol/L for probe A. The binding ratios of probe A to Trp were measured to be 1:1 by Job's plotting method, respectively. The complexation constant of probe A with Trp was found to be 2.733 × 10<sup>7</sup> L/mol according to the Benesi-Hildebrand equation. The bonding mechanism was explored through IR spectroscopy and ¹H NMR titration.</p>","PeriodicalId":15800,"journal":{"name":"Journal of Fluorescence","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of Ferrocenyl Chalcone-Containing Aminourea Schiff Bases and Their Detection on Tryptophan.\",\"authors\":\"Yuting Liu, Chi Dang, Dawei Yin, Ruilin Zheng, Zixu Zhang, Yi Zhou, Jiabao Chen\",\"doi\":\"10.1007/s10895-024-03967-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper, 1-phenyl-3-ferrocenylenone aminourea Schiff bases were synthesized by a novel method. A multifunctional molecular probe (Probe A) of 1-phenyl-3-ferrocenylenone, carbon-based solid acid, aminourea, and anhydrous ethanol was synthesized by adding them to a vessel at elevated temperatures and refluxing for the synthesis of a multifunctional molecular probe (Probe A) of 1-phenyl-3-ferrocenylenone aminourea Schiff base, and it was found that it recognizes tryptophan (Trp) in solution, and that the catalyst can be reused more than five times after recycling. This method is characterised by low cost, high efficiency, green environment and no waste acid. Fluorescence and UV spectra show that probe A specifically recognizes tryptophan (Trp) without interference by other amino acids or pH and time does not affect it within 45 min. The lowest limit of detection for Trp was 1.307 × 10<sup>- 4</sup> mol/L for probe A. The binding ratios of probe A to Trp were measured to be 1:1 by Job's plotting method, respectively. The complexation constant of probe A with Trp was found to be 2.733 × 10<sup>7</sup> L/mol according to the Benesi-Hildebrand equation. The bonding mechanism was explored through IR spectroscopy and ¹H NMR titration.</p>\",\"PeriodicalId\":15800,\"journal\":{\"name\":\"Journal of Fluorescence\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fluorescence\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s10895-024-03967-4\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluorescence","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s10895-024-03967-4","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Synthesis of Ferrocenyl Chalcone-Containing Aminourea Schiff Bases and Their Detection on Tryptophan.
In this paper, 1-phenyl-3-ferrocenylenone aminourea Schiff bases were synthesized by a novel method. A multifunctional molecular probe (Probe A) of 1-phenyl-3-ferrocenylenone, carbon-based solid acid, aminourea, and anhydrous ethanol was synthesized by adding them to a vessel at elevated temperatures and refluxing for the synthesis of a multifunctional molecular probe (Probe A) of 1-phenyl-3-ferrocenylenone aminourea Schiff base, and it was found that it recognizes tryptophan (Trp) in solution, and that the catalyst can be reused more than five times after recycling. This method is characterised by low cost, high efficiency, green environment and no waste acid. Fluorescence and UV spectra show that probe A specifically recognizes tryptophan (Trp) without interference by other amino acids or pH and time does not affect it within 45 min. The lowest limit of detection for Trp was 1.307 × 10- 4 mol/L for probe A. The binding ratios of probe A to Trp were measured to be 1:1 by Job's plotting method, respectively. The complexation constant of probe A with Trp was found to be 2.733 × 107 L/mol according to the Benesi-Hildebrand equation. The bonding mechanism was explored through IR spectroscopy and ¹H NMR titration.
期刊介绍:
Journal of Fluorescence is an international forum for the publication of peer-reviewed original articles that advance the practice of this established spectroscopic technique. Topics covered include advances in theory/and or data analysis, studies of the photophysics of aromatic molecules, solvent, and environmental effects, development of stationary or time-resolved measurements, advances in fluorescence microscopy, imaging, photobleaching/recovery measurements, and/or phosphorescence for studies of cell biology, chemical biology and the advanced uses of fluorescence in flow cytometry/analysis, immunology, high throughput screening/drug discovery, DNA sequencing/arrays, genomics and proteomics. Typical applications might include studies of macromolecular dynamics and conformation, intracellular chemistry, and gene expression. The journal also publishes papers that describe the synthesis and characterization of new fluorophores, particularly those displaying unique sensitivities and/or optical properties. In addition to original articles, the Journal also publishes reviews, rapid communications, short communications, letters to the editor, topical news articles, and technical and design notes.