{"title":"橙皮提取物(Citrus sinensis)处理对暴露于热应激的斑马鱼(Danio rerio)卵母细胞的影响。","authors":"Gretania Residiwati, Almira Ghina Shalawati, Muhamad Arfan Lesmana, Agri Kaltaria Anisa, Bonick Kartini Lonameo, Habib Syaiful Arif Tuska","doi":"10.14202/vetworld.2024.1821-1827","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and aim: </strong>Heat stress (HS) can negatively impact oocytes by disrupting mitochondrial activity, increasing the production of reactive oxygen species, and decreasing antioxidant levels. This study investigated the impact of orange peel (OP) exposure on zebrafish oocytes (ZOs) diameter, survival rate, and germinal vesicle breakdown (GVBD) during HS.</p><p><strong>Material and methods: </strong>We investigated the antioxidant effect of flavonoids (concentration = 328.58 ppm) derived from OP (<i>Citrus sinensis</i>) added to <i>in vitro maturation</i> (IVM) media of ZOs (<i>Danio rerio</i>) under non-heat stress (NHS) and HS conditions to mimic <i>in vivo</i> HS conditions due to the global warming phenomenon on females. ZO in stage 3 (n = 1080) was treated with 4 μL of OP extract (not treated/control) under HS: 32°C (Heat stress 32°C solution/Heat stress 32°C orange peel [HS32S/HS32O]) and 34°C (Heat stress 34°C solution/Heat stress 34°C orange peel [HS34S/HS34O]); and NHS: 28°C (Non-heat stress solution/Non-heat stress orange peel [NHSS/NHSO]), during maturation. After 24 h of maturation, we observed the oocyte diameter, survival rate, and GVBD rate. The data were analyzed with IBM Statistics 23 software using two-way analysis of variance and Kruskal-Wallis (p < 0.05).</p><p><strong>Results: </strong>The highest oocyte diameter data were in NHS treated with OP extract (NHSO) group (0.759 ± 0.01; mean ± standard error) compared with HS group using and without OP extract (HS32S [0.583 ± 0.02]; HS32O [0.689 ± 0.02]; HS34S [0.554 ± 0.02]; and HS34O [0.604 ± 0.02]). The survival rate of OP treated group, namely, NHSO (93% ± 3%), HS32O (85% ± 2%), and HS34O (80% ± 2%) was higher than that of the group without treatment (NHSS [83% ± 3%], HS32S [71% ± 6%], and HS34S [63% ± 3%]). ZO treated with OP extract (NHSO [93% ± 3%], HS32O [85% ± 2%], and HS34O [80% ± 2%]) showed a higher GVBD rate than the group without treatment (NHSS [83% ± 3%], HS32S [71% ± 6%], and HS34S [63% ± 3%]).</p><p><strong>Conclusion: </strong>It revealed that OP can enhance the oocyte diameter, survival rate, and GVBD rate of ZO under NHS and HS. Further investigation should be conducted to determine the effect of OP extract (<i>C. sinensis</i>) on <i>in vivo</i> conditions in females as an alternative treatment to face global warming.</p>","PeriodicalId":23587,"journal":{"name":"Veterinary World","volume":"17 8","pages":"1821-1827"},"PeriodicalIF":1.7000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11422641/pdf/","citationCount":"0","resultStr":"{\"title\":\"Effects of orange peel extract (<i>Citrus sinensis</i>) treatment on zebrafish oocytes (<i>Danio rerio</i>) exposed to heat stress.\",\"authors\":\"Gretania Residiwati, Almira Ghina Shalawati, Muhamad Arfan Lesmana, Agri Kaltaria Anisa, Bonick Kartini Lonameo, Habib Syaiful Arif Tuska\",\"doi\":\"10.14202/vetworld.2024.1821-1827\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background and aim: </strong>Heat stress (HS) can negatively impact oocytes by disrupting mitochondrial activity, increasing the production of reactive oxygen species, and decreasing antioxidant levels. This study investigated the impact of orange peel (OP) exposure on zebrafish oocytes (ZOs) diameter, survival rate, and germinal vesicle breakdown (GVBD) during HS.</p><p><strong>Material and methods: </strong>We investigated the antioxidant effect of flavonoids (concentration = 328.58 ppm) derived from OP (<i>Citrus sinensis</i>) added to <i>in vitro maturation</i> (IVM) media of ZOs (<i>Danio rerio</i>) under non-heat stress (NHS) and HS conditions to mimic <i>in vivo</i> HS conditions due to the global warming phenomenon on females. ZO in stage 3 (n = 1080) was treated with 4 μL of OP extract (not treated/control) under HS: 32°C (Heat stress 32°C solution/Heat stress 32°C orange peel [HS32S/HS32O]) and 34°C (Heat stress 34°C solution/Heat stress 34°C orange peel [HS34S/HS34O]); and NHS: 28°C (Non-heat stress solution/Non-heat stress orange peel [NHSS/NHSO]), during maturation. After 24 h of maturation, we observed the oocyte diameter, survival rate, and GVBD rate. The data were analyzed with IBM Statistics 23 software using two-way analysis of variance and Kruskal-Wallis (p < 0.05).</p><p><strong>Results: </strong>The highest oocyte diameter data were in NHS treated with OP extract (NHSO) group (0.759 ± 0.01; mean ± standard error) compared with HS group using and without OP extract (HS32S [0.583 ± 0.02]; HS32O [0.689 ± 0.02]; HS34S [0.554 ± 0.02]; and HS34O [0.604 ± 0.02]). The survival rate of OP treated group, namely, NHSO (93% ± 3%), HS32O (85% ± 2%), and HS34O (80% ± 2%) was higher than that of the group without treatment (NHSS [83% ± 3%], HS32S [71% ± 6%], and HS34S [63% ± 3%]). ZO treated with OP extract (NHSO [93% ± 3%], HS32O [85% ± 2%], and HS34O [80% ± 2%]) showed a higher GVBD rate than the group without treatment (NHSS [83% ± 3%], HS32S [71% ± 6%], and HS34S [63% ± 3%]).</p><p><strong>Conclusion: </strong>It revealed that OP can enhance the oocyte diameter, survival rate, and GVBD rate of ZO under NHS and HS. Further investigation should be conducted to determine the effect of OP extract (<i>C. sinensis</i>) on <i>in vivo</i> conditions in females as an alternative treatment to face global warming.</p>\",\"PeriodicalId\":23587,\"journal\":{\"name\":\"Veterinary World\",\"volume\":\"17 8\",\"pages\":\"1821-1827\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11422641/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Veterinary World\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14202/vetworld.2024.1821-1827\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Veterinary World","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14202/vetworld.2024.1821-1827","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/20 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
Effects of orange peel extract (Citrus sinensis) treatment on zebrafish oocytes (Danio rerio) exposed to heat stress.
Background and aim: Heat stress (HS) can negatively impact oocytes by disrupting mitochondrial activity, increasing the production of reactive oxygen species, and decreasing antioxidant levels. This study investigated the impact of orange peel (OP) exposure on zebrafish oocytes (ZOs) diameter, survival rate, and germinal vesicle breakdown (GVBD) during HS.
Material and methods: We investigated the antioxidant effect of flavonoids (concentration = 328.58 ppm) derived from OP (Citrus sinensis) added to in vitro maturation (IVM) media of ZOs (Danio rerio) under non-heat stress (NHS) and HS conditions to mimic in vivo HS conditions due to the global warming phenomenon on females. ZO in stage 3 (n = 1080) was treated with 4 μL of OP extract (not treated/control) under HS: 32°C (Heat stress 32°C solution/Heat stress 32°C orange peel [HS32S/HS32O]) and 34°C (Heat stress 34°C solution/Heat stress 34°C orange peel [HS34S/HS34O]); and NHS: 28°C (Non-heat stress solution/Non-heat stress orange peel [NHSS/NHSO]), during maturation. After 24 h of maturation, we observed the oocyte diameter, survival rate, and GVBD rate. The data were analyzed with IBM Statistics 23 software using two-way analysis of variance and Kruskal-Wallis (p < 0.05).
Results: The highest oocyte diameter data were in NHS treated with OP extract (NHSO) group (0.759 ± 0.01; mean ± standard error) compared with HS group using and without OP extract (HS32S [0.583 ± 0.02]; HS32O [0.689 ± 0.02]; HS34S [0.554 ± 0.02]; and HS34O [0.604 ± 0.02]). The survival rate of OP treated group, namely, NHSO (93% ± 3%), HS32O (85% ± 2%), and HS34O (80% ± 2%) was higher than that of the group without treatment (NHSS [83% ± 3%], HS32S [71% ± 6%], and HS34S [63% ± 3%]). ZO treated with OP extract (NHSO [93% ± 3%], HS32O [85% ± 2%], and HS34O [80% ± 2%]) showed a higher GVBD rate than the group without treatment (NHSS [83% ± 3%], HS32S [71% ± 6%], and HS34S [63% ± 3%]).
Conclusion: It revealed that OP can enhance the oocyte diameter, survival rate, and GVBD rate of ZO under NHS and HS. Further investigation should be conducted to determine the effect of OP extract (C. sinensis) on in vivo conditions in females as an alternative treatment to face global warming.
期刊介绍:
Veterinary World publishes high quality papers focusing on Veterinary and Animal Science. The fields of study are bacteriology, parasitology, pathology, virology, immunology, mycology, public health, biotechnology, meat science, fish diseases, nutrition, gynecology, genetics, wildlife, laboratory animals, animal models of human infections, prion diseases and epidemiology. Studies on zoonotic and emerging infections are highly appreciated. Review articles are highly appreciated. All articles published by Veterinary World are made freely and permanently accessible online. All articles to Veterinary World are posted online immediately as they are ready for publication.