Zewen An , Qihe Yuan , Hanqing Liang , Kun Wang , Xiaoying Yuan , Cuiping Wang , Qingjie Guo
{"title":"使用铁/铝氧载体对城市污泥进行化学循环气化过程中合成气生成的研究与优化","authors":"Zewen An , Qihe Yuan , Hanqing Liang , Kun Wang , Xiaoying Yuan , Cuiping Wang , Qingjie Guo","doi":"10.1016/j.joei.2024.101844","DOIUrl":null,"url":null,"abstract":"<div><div>To contribute to the reduction of carbon emissions, municipal sludge has to be utilized as a resource instead of being disposed of, especially since current sludge disposal methods encounter problems such as high dehydration energy consumption and secondary pollution. In this study, Fe/Al composite oxygen carriers (FOCs) were prepared using Al<sub>2</sub>O<sub>3</sub> particles as carriers and Fe(NO<sub>3</sub>)<sub>3</sub>·9H<sub>2</sub>O as a precursor. Chemical looping gasification (CLG) of wet municipal sludge was conducted in a FOC-loaded fixed bed reactor, and the effect of reaction parameters and conditions on FOCs and syngas generation characteristics were analyzed by various methods. The results showed that the participation of water vapor in the gasification reaction significantly improved the hydrogen production rate of sludge gasification and avoided the over-reduction of the FOC. The vapor released from sludge significantly improved the thermal conversion efficiency of the sludge. Higher temperatures were conducive to the gasification reaction in the first stage, but when the reaction temperature reached 900 °C, the FOC slightly sintered, the reaction atmosphere was affected, and the hydrogen ratio in syngas started decreasing. Controlling the mixing ratio of FOC to sludge (O/H) was an important influencing factor for preparing high-quality syngas. When O/H was higher than 0.25, the quality of syngas decreased significantly. The conclusions obtained in this study can guide the selection of reaction conditions for the CLG of wet sludge using FOCs to prepare hydrogen-rich syngas.</div></div>","PeriodicalId":17287,"journal":{"name":"Journal of The Energy Institute","volume":"117 ","pages":"Article 101844"},"PeriodicalIF":5.6000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation and optimization of syngas generation during chemical looping gasification of municipal sludge using Fe/Al oxygen carrier\",\"authors\":\"Zewen An , Qihe Yuan , Hanqing Liang , Kun Wang , Xiaoying Yuan , Cuiping Wang , Qingjie Guo\",\"doi\":\"10.1016/j.joei.2024.101844\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>To contribute to the reduction of carbon emissions, municipal sludge has to be utilized as a resource instead of being disposed of, especially since current sludge disposal methods encounter problems such as high dehydration energy consumption and secondary pollution. In this study, Fe/Al composite oxygen carriers (FOCs) were prepared using Al<sub>2</sub>O<sub>3</sub> particles as carriers and Fe(NO<sub>3</sub>)<sub>3</sub>·9H<sub>2</sub>O as a precursor. Chemical looping gasification (CLG) of wet municipal sludge was conducted in a FOC-loaded fixed bed reactor, and the effect of reaction parameters and conditions on FOCs and syngas generation characteristics were analyzed by various methods. The results showed that the participation of water vapor in the gasification reaction significantly improved the hydrogen production rate of sludge gasification and avoided the over-reduction of the FOC. The vapor released from sludge significantly improved the thermal conversion efficiency of the sludge. Higher temperatures were conducive to the gasification reaction in the first stage, but when the reaction temperature reached 900 °C, the FOC slightly sintered, the reaction atmosphere was affected, and the hydrogen ratio in syngas started decreasing. Controlling the mixing ratio of FOC to sludge (O/H) was an important influencing factor for preparing high-quality syngas. When O/H was higher than 0.25, the quality of syngas decreased significantly. The conclusions obtained in this study can guide the selection of reaction conditions for the CLG of wet sludge using FOCs to prepare hydrogen-rich syngas.</div></div>\",\"PeriodicalId\":17287,\"journal\":{\"name\":\"Journal of The Energy Institute\",\"volume\":\"117 \",\"pages\":\"Article 101844\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Energy Institute\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1743967124003222\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Energy Institute","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1743967124003222","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Investigation and optimization of syngas generation during chemical looping gasification of municipal sludge using Fe/Al oxygen carrier
To contribute to the reduction of carbon emissions, municipal sludge has to be utilized as a resource instead of being disposed of, especially since current sludge disposal methods encounter problems such as high dehydration energy consumption and secondary pollution. In this study, Fe/Al composite oxygen carriers (FOCs) were prepared using Al2O3 particles as carriers and Fe(NO3)3·9H2O as a precursor. Chemical looping gasification (CLG) of wet municipal sludge was conducted in a FOC-loaded fixed bed reactor, and the effect of reaction parameters and conditions on FOCs and syngas generation characteristics were analyzed by various methods. The results showed that the participation of water vapor in the gasification reaction significantly improved the hydrogen production rate of sludge gasification and avoided the over-reduction of the FOC. The vapor released from sludge significantly improved the thermal conversion efficiency of the sludge. Higher temperatures were conducive to the gasification reaction in the first stage, but when the reaction temperature reached 900 °C, the FOC slightly sintered, the reaction atmosphere was affected, and the hydrogen ratio in syngas started decreasing. Controlling the mixing ratio of FOC to sludge (O/H) was an important influencing factor for preparing high-quality syngas. When O/H was higher than 0.25, the quality of syngas decreased significantly. The conclusions obtained in this study can guide the selection of reaction conditions for the CLG of wet sludge using FOCs to prepare hydrogen-rich syngas.
期刊介绍:
The Journal of the Energy Institute provides peer reviewed coverage of original high quality research on energy, engineering and technology.The coverage is broad and the main areas of interest include:
Combustion engineering and associated technologies; process heating; power generation; engines and propulsion; emissions and environmental pollution control; clean coal technologies; carbon abatement technologies
Emissions and environmental pollution control; safety and hazards;
Clean coal technologies; carbon abatement technologies, including carbon capture and storage, CCS;
Petroleum engineering and fuel quality, including storage and transport
Alternative energy sources; biomass utilisation and biomass conversion technologies; energy from waste, incineration and recycling
Energy conversion, energy recovery and energy efficiency; space heating, fuel cells, heat pumps and cooling systems
Energy storage
The journal''s coverage reflects changes in energy technology that result from the transition to more efficient energy production and end use together with reduced carbon emission.