利用 SCAPS-1D 软件优化无铅 CH3NH3SnI3 包晶太阳能电池

Md Nahiduzzaman Nahid , Md Salman Shah , Hayati Mamur , Rakib Hosen , Mohammad Ruhul Amin Bhuiyan
{"title":"利用 SCAPS-1D 软件优化无铅 CH3NH3SnI3 包晶太阳能电池","authors":"Md Nahiduzzaman Nahid ,&nbsp;Md Salman Shah ,&nbsp;Hayati Mamur ,&nbsp;Rakib Hosen ,&nbsp;Mohammad Ruhul Amin Bhuiyan","doi":"10.1016/j.cinorg.2024.100069","DOIUrl":null,"url":null,"abstract":"<div><div>The lead-free CH<sub>3</sub>NH<sub>3</sub>SnI<sub>3</sub> perovskite is essential for absorbing light in perovskite solar cells (PSCs). In a photovoltaic (PV) device setup of FTO/STO/CH<sub>3</sub>NH<sub>3</sub>SnI<sub>3</sub>/Spiro-OMeTAD/Au, it demonstrates excellent PV performance. This device includes sulfur-doped tin oxide (STO) for the layer of electron transport (ETL), CH<sub>3</sub>NH<sub>3</sub>SnI<sub>3</sub> as the absorber, and the hole transport layer (HTL) is Spiro-OMeTAD. The upper and back contacts consist of fluorine-doped tin oxide (FTO) and gold (Au), connecting these layers. Several parameters were estimated using the Solar Cell Capacitance Simulator (SCAPS-1D) program, including the thickness, acceptor and donor densities, series and shunt resistances, and temperature. The absorber, HTL, ETL, and FTO thicknesses were set at 1000 ​nm, 100 ​nm, 150 ​nm, and 50 ​nm, respectively, to find the perfect configuration. Densities of acceptors and donors were maintained at 10<sup>19</sup> ​cm<sup>−3</sup>, 2.0 ​× ​10<sup>19</sup> ​cm<sup>−3</sup>, 2.0 ​× ​10<sup>18</sup> ​cm<sup>−3</sup>, and 10<sup>18</sup> ​cm<sup>−3</sup> for the absorber, HTL, ETL, and FTO, respectively, at an operating temperature of 300K. The device configuration exhibited reduced series resistance and increased shunt resistance, optimized with a back contact metal of Au. The idealized model demonstrated significant PV execution characteristics, including 1.117 ​V for open-circuit voltage (V<sub>OC</sub>), 28.88 ​mA/cm<sup>2</sup> for short-circuit current density (J<sub>SC</sub>), 88.47 ​% for fill factor (FF), and 28.55 ​% for power conversion efficiency (PCE) under the AM1.5G spectrum. Additionally, the device displayed an average quantum efficiency (QE) of approximately 88.30 ​% at visible light wavelengths.</div></div>","PeriodicalId":100233,"journal":{"name":"Chemistry of Inorganic Materials","volume":"4 ","pages":"Article 100069"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing lead-free CH3NH3SnI3 perovskite solar cells by using SCAPS-1D software\",\"authors\":\"Md Nahiduzzaman Nahid ,&nbsp;Md Salman Shah ,&nbsp;Hayati Mamur ,&nbsp;Rakib Hosen ,&nbsp;Mohammad Ruhul Amin Bhuiyan\",\"doi\":\"10.1016/j.cinorg.2024.100069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The lead-free CH<sub>3</sub>NH<sub>3</sub>SnI<sub>3</sub> perovskite is essential for absorbing light in perovskite solar cells (PSCs). In a photovoltaic (PV) device setup of FTO/STO/CH<sub>3</sub>NH<sub>3</sub>SnI<sub>3</sub>/Spiro-OMeTAD/Au, it demonstrates excellent PV performance. This device includes sulfur-doped tin oxide (STO) for the layer of electron transport (ETL), CH<sub>3</sub>NH<sub>3</sub>SnI<sub>3</sub> as the absorber, and the hole transport layer (HTL) is Spiro-OMeTAD. The upper and back contacts consist of fluorine-doped tin oxide (FTO) and gold (Au), connecting these layers. Several parameters were estimated using the Solar Cell Capacitance Simulator (SCAPS-1D) program, including the thickness, acceptor and donor densities, series and shunt resistances, and temperature. The absorber, HTL, ETL, and FTO thicknesses were set at 1000 ​nm, 100 ​nm, 150 ​nm, and 50 ​nm, respectively, to find the perfect configuration. Densities of acceptors and donors were maintained at 10<sup>19</sup> ​cm<sup>−3</sup>, 2.0 ​× ​10<sup>19</sup> ​cm<sup>−3</sup>, 2.0 ​× ​10<sup>18</sup> ​cm<sup>−3</sup>, and 10<sup>18</sup> ​cm<sup>−3</sup> for the absorber, HTL, ETL, and FTO, respectively, at an operating temperature of 300K. The device configuration exhibited reduced series resistance and increased shunt resistance, optimized with a back contact metal of Au. The idealized model demonstrated significant PV execution characteristics, including 1.117 ​V for open-circuit voltage (V<sub>OC</sub>), 28.88 ​mA/cm<sup>2</sup> for short-circuit current density (J<sub>SC</sub>), 88.47 ​% for fill factor (FF), and 28.55 ​% for power conversion efficiency (PCE) under the AM1.5G spectrum. Additionally, the device displayed an average quantum efficiency (QE) of approximately 88.30 ​% at visible light wavelengths.</div></div>\",\"PeriodicalId\":100233,\"journal\":{\"name\":\"Chemistry of Inorganic Materials\",\"volume\":\"4 \",\"pages\":\"Article 100069\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry of Inorganic Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949746924000375\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry of Inorganic Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949746924000375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

无铅 CH3NH3SnI3 包晶体是包晶体太阳能电池(PSC)吸收光线的关键。在 FTO/STO/CH3NH3SnI3/Spiro-OMeTAD/Au 的光伏(PV)器件设置中,它表现出了卓越的光伏性能。该器件的电子传输层(ETL)为掺硫氧化锡(STO),吸收层为 CH3NH3SnI3,空穴传输层(HTL)为螺烯-OMeTAD。上触点和背触点由掺氟氧化锡(FTO)和金(Au)组成,连接这些层。使用太阳能电池电容模拟器(SCAPS-1D)程序估算了几个参数,包括厚度、受体和供体密度、串联和并联电阻以及温度。吸收体、HTL、ETL 和 FTO 的厚度分别设定为 1000 nm、100 nm、150 nm 和 50 nm,以找到最佳配置。在 300K 工作温度下,吸收体、HTL、ETL 和 FTO 的受体和供体密度分别保持在 1019 cm-3、2.0 × 1019 cm-3、2.0 × 1018 cm-3 和 1018 cm-3。该器件配置显示出串联电阻减小、并联电阻增大的特点,并通过背面接触金属金进行了优化。理想化模型显示了显著的光伏执行特性,包括在 AM1.5G 频谱下开路电压 (VOC) 为 1.117 V、短路电流密度 (JSC) 为 28.88 mA/cm2、填充因子 (FF) 为 88.47 %、功率转换效率 (PCE) 为 28.55 %。此外,该器件在可见光波长下的平均量子效率(QE)约为 88.30%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimizing lead-free CH3NH3SnI3 perovskite solar cells by using SCAPS-1D software
The lead-free CH3NH3SnI3 perovskite is essential for absorbing light in perovskite solar cells (PSCs). In a photovoltaic (PV) device setup of FTO/STO/CH3NH3SnI3/Spiro-OMeTAD/Au, it demonstrates excellent PV performance. This device includes sulfur-doped tin oxide (STO) for the layer of electron transport (ETL), CH3NH3SnI3 as the absorber, and the hole transport layer (HTL) is Spiro-OMeTAD. The upper and back contacts consist of fluorine-doped tin oxide (FTO) and gold (Au), connecting these layers. Several parameters were estimated using the Solar Cell Capacitance Simulator (SCAPS-1D) program, including the thickness, acceptor and donor densities, series and shunt resistances, and temperature. The absorber, HTL, ETL, and FTO thicknesses were set at 1000 ​nm, 100 ​nm, 150 ​nm, and 50 ​nm, respectively, to find the perfect configuration. Densities of acceptors and donors were maintained at 1019 ​cm−3, 2.0 ​× ​1019 ​cm−3, 2.0 ​× ​1018 ​cm−3, and 1018 ​cm−3 for the absorber, HTL, ETL, and FTO, respectively, at an operating temperature of 300K. The device configuration exhibited reduced series resistance and increased shunt resistance, optimized with a back contact metal of Au. The idealized model demonstrated significant PV execution characteristics, including 1.117 ​V for open-circuit voltage (VOC), 28.88 ​mA/cm2 for short-circuit current density (JSC), 88.47 ​% for fill factor (FF), and 28.55 ​% for power conversion efficiency (PCE) under the AM1.5G spectrum. Additionally, the device displayed an average quantum efficiency (QE) of approximately 88.30 ​% at visible light wavelengths.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multifunctional silver-doped strontium hexaferrite nanoparticles: Magnetic, optical, photocatalytic, and antimicrobial properties Enhanced optical and electrical properties of NiO-GO composite thin films on flexible PET substrates for optoelectronic applications Characteristics of Mg-based cathode materials with different doping element concentrations Comparative study on photocatalytic efficiency of Mg doped CuFeO2 versus TiO2 doped CuFeO2 delafossite based on their application for the removal of tartrazine yellow dye Ag(I) decorated isomeric triazine complexes as efficient hydrogen storage materials - A theoretical investigation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1