{"title":"熊果酸可恢复去神经支配诱导的骨骼肌萎缩中的氧化还原平衡和促炎细胞因子的产生","authors":"Aarti Yadav, Rajesh Dabur","doi":"10.1007/s12010-024-05059-2","DOIUrl":null,"url":null,"abstract":"<p><p>Skeletal muscle (SkM) atrophy results from metabolic disorders causing body and muscle mass loss, affecting morbidity and mortality. Increased oxidative stress, inflammation, and poor prognosis are the leading causes of involuntary weight loss. Ursolic acid (UA), known for its antioxidant and anti-inflammatory properties, can potentially reduce oxidative stress and inflammation in muscles, but its effects on muscle mass regulation are still unknown. Therefore, the present study investigated the medicinal efficacy of UA and its mode of action against the murine model of SkM atrophy over 7 days of UA supplementation. Denervation-induced SkM atrophy significantly impacts overall body weight and the weight of individual muscles (p < 0.05). However, supplementation with UA can effectively counteract these effects by promoting the synthesis of the slow-myosin heavy chain, thereby restoring body weight and myotube diameter. Moreover, UA also plays a crucial role in reducing the production levels of reactive oxygen species (ROS), lipid peroxidation (LPO), and caspase-3-like activity in atrophied muscles. UA also prevents the leakage of creatine kinase (CK) through the upregulation of superoxide dismutase (SOD) and glutathione peroxidase (GPx) expression. Furthermore, the results obtained from qRT-PCR demonstrated a significant decrease in the levels of pro-inflammatory markers, namely IL-1β, IL-6, TNF-α, and TWEAK, up to four-fold after the third day of the UA intervention. UA also upregulated PGC-1α, Bcl2, and p-Akt<sup>ser473</sup> expression towards the regulation of redox homeostasis.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ursolic Acid Restores Redox Homeostasis and Pro-inflammatory Cytokine Production in Denervation-Induced Skeletal Muscle Atrophy.\",\"authors\":\"Aarti Yadav, Rajesh Dabur\",\"doi\":\"10.1007/s12010-024-05059-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Skeletal muscle (SkM) atrophy results from metabolic disorders causing body and muscle mass loss, affecting morbidity and mortality. Increased oxidative stress, inflammation, and poor prognosis are the leading causes of involuntary weight loss. Ursolic acid (UA), known for its antioxidant and anti-inflammatory properties, can potentially reduce oxidative stress and inflammation in muscles, but its effects on muscle mass regulation are still unknown. Therefore, the present study investigated the medicinal efficacy of UA and its mode of action against the murine model of SkM atrophy over 7 days of UA supplementation. Denervation-induced SkM atrophy significantly impacts overall body weight and the weight of individual muscles (p < 0.05). However, supplementation with UA can effectively counteract these effects by promoting the synthesis of the slow-myosin heavy chain, thereby restoring body weight and myotube diameter. Moreover, UA also plays a crucial role in reducing the production levels of reactive oxygen species (ROS), lipid peroxidation (LPO), and caspase-3-like activity in atrophied muscles. UA also prevents the leakage of creatine kinase (CK) through the upregulation of superoxide dismutase (SOD) and glutathione peroxidase (GPx) expression. Furthermore, the results obtained from qRT-PCR demonstrated a significant decrease in the levels of pro-inflammatory markers, namely IL-1β, IL-6, TNF-α, and TWEAK, up to four-fold after the third day of the UA intervention. UA also upregulated PGC-1α, Bcl2, and p-Akt<sup>ser473</sup> expression towards the regulation of redox homeostasis.</p>\",\"PeriodicalId\":465,\"journal\":{\"name\":\"Applied Biochemistry and Biotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Biochemistry and Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12010-024-05059-2\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Biochemistry and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12010-024-05059-2","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Ursolic Acid Restores Redox Homeostasis and Pro-inflammatory Cytokine Production in Denervation-Induced Skeletal Muscle Atrophy.
Skeletal muscle (SkM) atrophy results from metabolic disorders causing body and muscle mass loss, affecting morbidity and mortality. Increased oxidative stress, inflammation, and poor prognosis are the leading causes of involuntary weight loss. Ursolic acid (UA), known for its antioxidant and anti-inflammatory properties, can potentially reduce oxidative stress and inflammation in muscles, but its effects on muscle mass regulation are still unknown. Therefore, the present study investigated the medicinal efficacy of UA and its mode of action against the murine model of SkM atrophy over 7 days of UA supplementation. Denervation-induced SkM atrophy significantly impacts overall body weight and the weight of individual muscles (p < 0.05). However, supplementation with UA can effectively counteract these effects by promoting the synthesis of the slow-myosin heavy chain, thereby restoring body weight and myotube diameter. Moreover, UA also plays a crucial role in reducing the production levels of reactive oxygen species (ROS), lipid peroxidation (LPO), and caspase-3-like activity in atrophied muscles. UA also prevents the leakage of creatine kinase (CK) through the upregulation of superoxide dismutase (SOD) and glutathione peroxidase (GPx) expression. Furthermore, the results obtained from qRT-PCR demonstrated a significant decrease in the levels of pro-inflammatory markers, namely IL-1β, IL-6, TNF-α, and TWEAK, up to four-fold after the third day of the UA intervention. UA also upregulated PGC-1α, Bcl2, and p-Aktser473 expression towards the regulation of redox homeostasis.
期刊介绍:
This journal is devoted to publishing the highest quality innovative papers in the fields of biochemistry and biotechnology. The typical focus of the journal is to report applications of novel scientific and technological breakthroughs, as well as technological subjects that are still in the proof-of-concept stage. Applied Biochemistry and Biotechnology provides a forum for case studies and practical concepts of biotechnology, utilization, including controls, statistical data analysis, problem descriptions unique to a particular application, and bioprocess economic analyses. The journal publishes reviews deemed of interest to readers, as well as book reviews, meeting and symposia notices, and news items relating to biotechnology in both the industrial and academic communities.
In addition, Applied Biochemistry and Biotechnology often publishes lists of patents and publications of special interest to readers.