Iztok Dogsa, Barbara Bellich, Mojca Blaznik, Cristina Lagatolla, Neil Ravenscroft, Roberto Rizzo, David Stopar, Paola Cescutti
{"title":"枯草杆菌 EpsA-O:一种新型外多糖结构可作为生物膜中的高效粘合剂。","authors":"Iztok Dogsa, Barbara Bellich, Mojca Blaznik, Cristina Lagatolla, Neil Ravenscroft, Roberto Rizzo, David Stopar, Paola Cescutti","doi":"10.1038/s41522-024-00555-z","DOIUrl":null,"url":null,"abstract":"<p><p>Extracellular polysaccharides are crucial components for biofilm development. Although Bacillus subtilis is one of the most characterized Gram-positive biofilm model system, the structure-function of its exopolysaccharide, EpsA-O, remains to be elucidated. By combining chemical analysis, NMR spectroscopy, rheology, and molecular modeling, high-resolution data of EpsA-O structure from atom to supramolecular scale was obtained. The repeating unit is composed of the trisaccharide backbone [→3)-β-D-QuipNAc4NAc-(1→3)-β-D-GalpNAc-(1→3)-α-D-GlcpNAc-(1]<sub>n</sub>, and the side chain β-D-Galp(3,4-S-Pyr)-(1→6)-β-D-Galp(3,4-S-Pyr)-(1→6)-α-D-Galp-(1→ linked to C4 of GalNAc. Close agreement between the primary structure and rheological behavior allowed us to model EpsA-O macromolecular and supramolecular solution structure, which can span the intercellular space forming a gel that leads to a complex 3D biofilm network as corroborated by a mutant strain with impaired ability to produce EpsA-O. This is a comprehensive structure-function investigation of the essential biofilm adhesive exopolysaccharide that will serve as a useful guide for future studies in biofilm architecture formation.</p>","PeriodicalId":19370,"journal":{"name":"npj Biofilms and Microbiomes","volume":"10 1","pages":"98"},"PeriodicalIF":7.8000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11447030/pdf/","citationCount":"0","resultStr":"{\"title\":\"Bacillus subtilis EpsA-O: A novel exopolysaccharide structure acting as an efficient adhesive in biofilms.\",\"authors\":\"Iztok Dogsa, Barbara Bellich, Mojca Blaznik, Cristina Lagatolla, Neil Ravenscroft, Roberto Rizzo, David Stopar, Paola Cescutti\",\"doi\":\"10.1038/s41522-024-00555-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Extracellular polysaccharides are crucial components for biofilm development. Although Bacillus subtilis is one of the most characterized Gram-positive biofilm model system, the structure-function of its exopolysaccharide, EpsA-O, remains to be elucidated. By combining chemical analysis, NMR spectroscopy, rheology, and molecular modeling, high-resolution data of EpsA-O structure from atom to supramolecular scale was obtained. The repeating unit is composed of the trisaccharide backbone [→3)-β-D-QuipNAc4NAc-(1→3)-β-D-GalpNAc-(1→3)-α-D-GlcpNAc-(1]<sub>n</sub>, and the side chain β-D-Galp(3,4-S-Pyr)-(1→6)-β-D-Galp(3,4-S-Pyr)-(1→6)-α-D-Galp-(1→ linked to C4 of GalNAc. Close agreement between the primary structure and rheological behavior allowed us to model EpsA-O macromolecular and supramolecular solution structure, which can span the intercellular space forming a gel that leads to a complex 3D biofilm network as corroborated by a mutant strain with impaired ability to produce EpsA-O. This is a comprehensive structure-function investigation of the essential biofilm adhesive exopolysaccharide that will serve as a useful guide for future studies in biofilm architecture formation.</p>\",\"PeriodicalId\":19370,\"journal\":{\"name\":\"npj Biofilms and Microbiomes\",\"volume\":\"10 1\",\"pages\":\"98\"},\"PeriodicalIF\":7.8000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11447030/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Biofilms and Microbiomes\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41522-024-00555-z\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Biofilms and Microbiomes","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41522-024-00555-z","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Bacillus subtilis EpsA-O: A novel exopolysaccharide structure acting as an efficient adhesive in biofilms.
Extracellular polysaccharides are crucial components for biofilm development. Although Bacillus subtilis is one of the most characterized Gram-positive biofilm model system, the structure-function of its exopolysaccharide, EpsA-O, remains to be elucidated. By combining chemical analysis, NMR spectroscopy, rheology, and molecular modeling, high-resolution data of EpsA-O structure from atom to supramolecular scale was obtained. The repeating unit is composed of the trisaccharide backbone [→3)-β-D-QuipNAc4NAc-(1→3)-β-D-GalpNAc-(1→3)-α-D-GlcpNAc-(1]n, and the side chain β-D-Galp(3,4-S-Pyr)-(1→6)-β-D-Galp(3,4-S-Pyr)-(1→6)-α-D-Galp-(1→ linked to C4 of GalNAc. Close agreement between the primary structure and rheological behavior allowed us to model EpsA-O macromolecular and supramolecular solution structure, which can span the intercellular space forming a gel that leads to a complex 3D biofilm network as corroborated by a mutant strain with impaired ability to produce EpsA-O. This is a comprehensive structure-function investigation of the essential biofilm adhesive exopolysaccharide that will serve as a useful guide for future studies in biofilm architecture formation.
期刊介绍:
npj Biofilms and Microbiomes is a comprehensive platform that promotes research on biofilms and microbiomes across various scientific disciplines. The journal facilitates cross-disciplinary discussions to enhance our understanding of the biology, ecology, and communal functions of biofilms, populations, and communities. It also focuses on applications in the medical, environmental, and engineering domains. The scope of the journal encompasses all aspects of the field, ranging from cell-cell communication and single cell interactions to the microbiomes of humans, animals, plants, and natural and built environments. The journal also welcomes research on the virome, phageome, mycome, and fungome. It publishes both applied science and theoretical work. As an open access and interdisciplinary journal, its primary goal is to publish significant scientific advancements in microbial biofilms and microbiomes. The journal enables discussions that span multiple disciplines and contributes to our understanding of the social behavior of microbial biofilm populations and communities, and their impact on life, human health, and the environment.