{"title":"禾本科镰刀菌的一种效应蛋白以叶绿体为目标,抑制循环光合电子流。","authors":"Minxia Jin, Su Hu, Qin Wu, Xiangran Feng, Yazhou Zhang, Qiantao Jiang, Jian Ma, Pengfei Qi, Guoyue Chen, Yunfeng Jiang, Youliang Zheng, Yuming Wei, Qiang Xu","doi":"10.1093/plphys/kiae538","DOIUrl":null,"url":null,"abstract":"<p><p>Chloroplasts are important photosynthetic organelles that regulate plant immunity, growth, and development. However, the role of fungal secretory proteins in linking the photosystem to the plant immune system remains largely unknown. Our systematic characterization of 17 chloroplast-targeting secreted proteins of Fusarium graminearum indicated that Fg03600 is an important virulence factor. Fg03600 translocation into plant cells and accumulation in chloroplasts depended on its chloroplast transit peptide. Fg03600 interacted with the wheat (Triticum aestivum L.) proton gradient regulation 5-like protein 1 (TaPGRL1), a part of the cyclic photosynthetic electron transport chain, and promoted TaPGRL1 homo-dimerization. Interestingly, TaPGRL1 also interacted with ferredoxin (TaFd), a chloroplast ferredoxin protein that transfers cyclic electrons to TaPGRL1. TaFd competed with Fg03600 for binding to the same region of TaPGRL1. Fg03600 expression in plants decreased cyclic electron flow (CEF) but increased the production of chloroplast-derived reactive oxygen species (ROS). Stably silenced TaPGRL1 impaired resistance to Fusarium head blight (FHB) and disrupted CEF. Overall, Fg03600 acts as a chloroplast-targeting effector to suppress plant CEF and increase photosynthesis-derived ROS for FHB development at the necrotrophic stage by promoting homo-dimeric TaPGRL1 or competing with TaFd for TaPGRL1 binding.</p>","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":null,"pages":null},"PeriodicalIF":6.5000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An effector protein of Fusarium graminearum targets chloroplasts and suppresses cyclic photosynthetic electron flow.\",\"authors\":\"Minxia Jin, Su Hu, Qin Wu, Xiangran Feng, Yazhou Zhang, Qiantao Jiang, Jian Ma, Pengfei Qi, Guoyue Chen, Yunfeng Jiang, Youliang Zheng, Yuming Wei, Qiang Xu\",\"doi\":\"10.1093/plphys/kiae538\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chloroplasts are important photosynthetic organelles that regulate plant immunity, growth, and development. However, the role of fungal secretory proteins in linking the photosystem to the plant immune system remains largely unknown. Our systematic characterization of 17 chloroplast-targeting secreted proteins of Fusarium graminearum indicated that Fg03600 is an important virulence factor. Fg03600 translocation into plant cells and accumulation in chloroplasts depended on its chloroplast transit peptide. Fg03600 interacted with the wheat (Triticum aestivum L.) proton gradient regulation 5-like protein 1 (TaPGRL1), a part of the cyclic photosynthetic electron transport chain, and promoted TaPGRL1 homo-dimerization. Interestingly, TaPGRL1 also interacted with ferredoxin (TaFd), a chloroplast ferredoxin protein that transfers cyclic electrons to TaPGRL1. TaFd competed with Fg03600 for binding to the same region of TaPGRL1. Fg03600 expression in plants decreased cyclic electron flow (CEF) but increased the production of chloroplast-derived reactive oxygen species (ROS). Stably silenced TaPGRL1 impaired resistance to Fusarium head blight (FHB) and disrupted CEF. Overall, Fg03600 acts as a chloroplast-targeting effector to suppress plant CEF and increase photosynthesis-derived ROS for FHB development at the necrotrophic stage by promoting homo-dimeric TaPGRL1 or competing with TaFd for TaPGRL1 binding.</p>\",\"PeriodicalId\":20101,\"journal\":{\"name\":\"Plant Physiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/plphys/kiae538\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plphys/kiae538","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
An effector protein of Fusarium graminearum targets chloroplasts and suppresses cyclic photosynthetic electron flow.
Chloroplasts are important photosynthetic organelles that regulate plant immunity, growth, and development. However, the role of fungal secretory proteins in linking the photosystem to the plant immune system remains largely unknown. Our systematic characterization of 17 chloroplast-targeting secreted proteins of Fusarium graminearum indicated that Fg03600 is an important virulence factor. Fg03600 translocation into plant cells and accumulation in chloroplasts depended on its chloroplast transit peptide. Fg03600 interacted with the wheat (Triticum aestivum L.) proton gradient regulation 5-like protein 1 (TaPGRL1), a part of the cyclic photosynthetic electron transport chain, and promoted TaPGRL1 homo-dimerization. Interestingly, TaPGRL1 also interacted with ferredoxin (TaFd), a chloroplast ferredoxin protein that transfers cyclic electrons to TaPGRL1. TaFd competed with Fg03600 for binding to the same region of TaPGRL1. Fg03600 expression in plants decreased cyclic electron flow (CEF) but increased the production of chloroplast-derived reactive oxygen species (ROS). Stably silenced TaPGRL1 impaired resistance to Fusarium head blight (FHB) and disrupted CEF. Overall, Fg03600 acts as a chloroplast-targeting effector to suppress plant CEF and increase photosynthesis-derived ROS for FHB development at the necrotrophic stage by promoting homo-dimeric TaPGRL1 or competing with TaFd for TaPGRL1 binding.
期刊介绍:
Plant Physiology® is a distinguished and highly respected journal with a rich history dating back to its establishment in 1926. It stands as a leading international publication in the field of plant biology, covering a comprehensive range of topics from the molecular and structural aspects of plant life to systems biology and ecophysiology. Recognized as the most highly cited journal in plant sciences, Plant Physiology® is a testament to its commitment to excellence and the dissemination of groundbreaking research.
As the official publication of the American Society of Plant Biologists, Plant Physiology® upholds rigorous peer-review standards, ensuring that the scientific community receives the highest quality research. The journal releases 12 issues annually, providing a steady stream of new findings and insights to its readership.