{"title":"锈层的微生物群落受到海水微生物群落的影响。","authors":"Shengxun Yao, Junxiang Lai, Congtao Sun, Maomi Zhao, Jizhou Duan, Xiufen Liao, Zihan Pan","doi":"10.1080/08927014.2024.2411076","DOIUrl":null,"url":null,"abstract":"<p><p>To reveal the responsible microorganisms of microbiologically-influenced-corrosion (MIC), using 16S rRNA and ITS sequencing techniques, we investigated the bacterial and fungal communities in rust layer and seawater. Results show that the corrosion-related genera of <i>Erythrobacter</i>, <i>norank_f__Rhodothermaceae</i>, and <i>Acinetobacter</i> bacteria, as well as <i>Aspergillus</i> fungi, were overrepresented in the rust layer, along with the <i>Pseudoalteromonas</i> and <i>Marinobacterium</i> bacteria in seawater, and <i>Ramlibacter</i>, <i>Aquimarina</i>, and <i>Williamsia</i> bacteria were first detected in the rust layer. SourceTracker analysis revealed that approximately 23.08% of bacteria and 21.48% of fungi originated from seawater. Stochastic processes governed the rust layer and seawater microbial communities, and network analysis showed coexistence and interaction among bacterial and fungal communities. These results indicate that the composition of microbial communities in the rust layer was influenced by the marine environmental microbial communities, which can provide basic data support for the control of MIC in marine-related projects.</p>","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":" ","pages":"754-771"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The microbial communities of the rust layer were influenced by seawater microbial communities.\",\"authors\":\"Shengxun Yao, Junxiang Lai, Congtao Sun, Maomi Zhao, Jizhou Duan, Xiufen Liao, Zihan Pan\",\"doi\":\"10.1080/08927014.2024.2411076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To reveal the responsible microorganisms of microbiologically-influenced-corrosion (MIC), using 16S rRNA and ITS sequencing techniques, we investigated the bacterial and fungal communities in rust layer and seawater. Results show that the corrosion-related genera of <i>Erythrobacter</i>, <i>norank_f__Rhodothermaceae</i>, and <i>Acinetobacter</i> bacteria, as well as <i>Aspergillus</i> fungi, were overrepresented in the rust layer, along with the <i>Pseudoalteromonas</i> and <i>Marinobacterium</i> bacteria in seawater, and <i>Ramlibacter</i>, <i>Aquimarina</i>, and <i>Williamsia</i> bacteria were first detected in the rust layer. SourceTracker analysis revealed that approximately 23.08% of bacteria and 21.48% of fungi originated from seawater. Stochastic processes governed the rust layer and seawater microbial communities, and network analysis showed coexistence and interaction among bacterial and fungal communities. These results indicate that the composition of microbial communities in the rust layer was influenced by the marine environmental microbial communities, which can provide basic data support for the control of MIC in marine-related projects.</p>\",\"PeriodicalId\":8898,\"journal\":{\"name\":\"Biofouling\",\"volume\":\" \",\"pages\":\"754-771\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biofouling\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/08927014.2024.2411076\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofouling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/08927014.2024.2411076","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/7 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
为了揭示微生物影响腐蚀(MIC)的责任微生物,我们利用 16S rRNA 和 ITS 测序技术,研究了锈层和海水中的细菌和真菌群落。结果表明,锈层中与腐蚀相关的红杆菌属、诺兰克_f__霍多菌属和醋氨曲霉属细菌以及曲霉菌在海水中的比例较高,海水中的假交替单胞菌和马林杆菌在锈层中的比例也较高,而拉姆利杆菌属、水华菌属和威廉姆斯菌属则在锈层中首次被检测到。源追踪分析显示,约 23.08% 的细菌和 21.48% 的真菌来自海水。随机过程控制着锈层和海水微生物群落,网络分析显示了细菌和真菌群落之间的共存和相互作用。这些结果表明,锈层微生物群落的组成受海洋环境微生物群落的影响,可为海洋相关项目中 MIC 的控制提供基础数据支持。
The microbial communities of the rust layer were influenced by seawater microbial communities.
To reveal the responsible microorganisms of microbiologically-influenced-corrosion (MIC), using 16S rRNA and ITS sequencing techniques, we investigated the bacterial and fungal communities in rust layer and seawater. Results show that the corrosion-related genera of Erythrobacter, norank_f__Rhodothermaceae, and Acinetobacter bacteria, as well as Aspergillus fungi, were overrepresented in the rust layer, along with the Pseudoalteromonas and Marinobacterium bacteria in seawater, and Ramlibacter, Aquimarina, and Williamsia bacteria were first detected in the rust layer. SourceTracker analysis revealed that approximately 23.08% of bacteria and 21.48% of fungi originated from seawater. Stochastic processes governed the rust layer and seawater microbial communities, and network analysis showed coexistence and interaction among bacterial and fungal communities. These results indicate that the composition of microbial communities in the rust layer was influenced by the marine environmental microbial communities, which can provide basic data support for the control of MIC in marine-related projects.
期刊介绍:
Biofouling is an international, peer-reviewed, multi-discliplinary journal which publishes original articles and mini-reviews and provides a forum for publication of pure and applied work on protein, microbial, fungal, plant and animal fouling and its control, as well as studies of all kinds on biofilms and bioadhesion.
Papers may be based on studies relating to characterisation, attachment, growth and control on any natural (living) or man-made surface in the freshwater, marine or aerial environments, including fouling, biofilms and bioadhesion in the medical, dental, and industrial context.
Specific areas of interest include antifouling technologies and coatings including transmission of invasive species, antimicrobial agents, biological interfaces, biomaterials, microbiologically influenced corrosion, membrane biofouling, food industry biofilms, biofilm based diseases and indwelling biomedical devices as substrata for fouling and biofilm growth, including papers based on clinically-relevant work using models that mimic the realistic environment in which they are intended to be used.