在长期血糖控制中输送聚乙二醇化胰岛素的功能性纳米伴侣。

IF 5.8 3区 医学 Q1 MATERIALS SCIENCE, BIOMATERIALS Biomaterials Science Pub Date : 2024-10-04 DOI:10.1039/D4BM01163E
Xiaohui Wu, Yanli Zhang, Shuoshuo Song, Sainan Liu, Feihe Ma, Rujiang Ma and Linqi Shi
{"title":"在长期血糖控制中输送聚乙二醇化胰岛素的功能性纳米伴侣。","authors":"Xiaohui Wu, Yanli Zhang, Shuoshuo Song, Sainan Liu, Feihe Ma, Rujiang Ma and Linqi Shi","doi":"10.1039/D4BM01163E","DOIUrl":null,"url":null,"abstract":"<p >PEGylation is a promising strategy for modulating the physicochemical properties and improving the therapeutic efficacy of protein drugs. However, the application of multi-PEGylation frequently results in diminished protein activity. A single low molecular weight PEG (5 kDa) modified at the amino terminus of the B chain preserves the biological activity of insulin and moderately improves its pharmacokinetics. Nonetheless, this modification offers limited protein stabilization. Furthermore, overdoses still carry the risk of hypoglycemia, posing challenges for the clinical application of PEGylated insulin. Here, we constructed multifunctional nanochaperones featuring phenylboronic acid (PBA) modified hydrophobic microdomains and nitrilotriacetic acid (NTA)-based coordination domains (PN-nChaps) for PEGylated insulin delivery. This delivery strategy effectively overcomes the limitations associated with PEGylation by enhancing the stability and reducing the immunogenicity of PEGylated insulin, while enabling glucose-responsive controlled release. PEGylated insulin with nanochaperone carrier demonstrates a prolonged half-life (<em>t</em><small><sub>1/2</sub></small> = 18.66 h), facilitates on-demand release, and minimizes the risk of hypoglycemia. This approach provides a safe and effective strategy for long-term glycemic management in diabetic patients.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" 22","pages":" 5742-5752"},"PeriodicalIF":5.8000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Functional nanochaperones for PEGylated insulin delivery in long-term glycemic control†\",\"authors\":\"Xiaohui Wu, Yanli Zhang, Shuoshuo Song, Sainan Liu, Feihe Ma, Rujiang Ma and Linqi Shi\",\"doi\":\"10.1039/D4BM01163E\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >PEGylation is a promising strategy for modulating the physicochemical properties and improving the therapeutic efficacy of protein drugs. However, the application of multi-PEGylation frequently results in diminished protein activity. A single low molecular weight PEG (5 kDa) modified at the amino terminus of the B chain preserves the biological activity of insulin and moderately improves its pharmacokinetics. Nonetheless, this modification offers limited protein stabilization. Furthermore, overdoses still carry the risk of hypoglycemia, posing challenges for the clinical application of PEGylated insulin. Here, we constructed multifunctional nanochaperones featuring phenylboronic acid (PBA) modified hydrophobic microdomains and nitrilotriacetic acid (NTA)-based coordination domains (PN-nChaps) for PEGylated insulin delivery. This delivery strategy effectively overcomes the limitations associated with PEGylation by enhancing the stability and reducing the immunogenicity of PEGylated insulin, while enabling glucose-responsive controlled release. PEGylated insulin with nanochaperone carrier demonstrates a prolonged half-life (<em>t</em><small><sub>1/2</sub></small> = 18.66 h), facilitates on-demand release, and minimizes the risk of hypoglycemia. This approach provides a safe and effective strategy for long-term glycemic management in diabetic patients.</p>\",\"PeriodicalId\":65,\"journal\":{\"name\":\"Biomaterials Science\",\"volume\":\" 22\",\"pages\":\" 5742-5752\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomaterials Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/bm/d4bm01163e\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials Science","FirstCategoryId":"5","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/bm/d4bm01163e","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

PEG 化是调节蛋白质药物理化性质和提高疗效的一种有前途的策略。然而,多重 PEG 化的应用往往会导致蛋白质活性降低。在 B 链氨基末端修饰单个低分子量 PEG(5 kDa)可保持胰岛素的生物活性,并适度改善其药代动力学。然而,这种修饰对蛋白质的稳定作用有限。此外,过量使用仍有低血糖的风险,这给聚乙二醇化胰岛素的临床应用带来了挑战。在此,我们构建了具有苯硼酸(PBA)修饰疏水微域和基于氮基三乙酸(NTA)配位域(PN-nChaps)的多功能纳米伴侣,用于 PEG 化胰岛素的递送。这种给药策略有效克服了 PEG 化的局限性,提高了 PEG 化胰岛素的稳定性,降低了其免疫原性,同时实现了葡萄糖响应式控释。带有纳米伴侣载体的 PEG 化胰岛素具有较长的半衰期(t1/2 = 18.66 h),有利于按需释放,并将低血糖风险降至最低。这种方法为糖尿病患者的长期血糖管理提供了一种安全有效的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Functional nanochaperones for PEGylated insulin delivery in long-term glycemic control†

PEGylation is a promising strategy for modulating the physicochemical properties and improving the therapeutic efficacy of protein drugs. However, the application of multi-PEGylation frequently results in diminished protein activity. A single low molecular weight PEG (5 kDa) modified at the amino terminus of the B chain preserves the biological activity of insulin and moderately improves its pharmacokinetics. Nonetheless, this modification offers limited protein stabilization. Furthermore, overdoses still carry the risk of hypoglycemia, posing challenges for the clinical application of PEGylated insulin. Here, we constructed multifunctional nanochaperones featuring phenylboronic acid (PBA) modified hydrophobic microdomains and nitrilotriacetic acid (NTA)-based coordination domains (PN-nChaps) for PEGylated insulin delivery. This delivery strategy effectively overcomes the limitations associated with PEGylation by enhancing the stability and reducing the immunogenicity of PEGylated insulin, while enabling glucose-responsive controlled release. PEGylated insulin with nanochaperone carrier demonstrates a prolonged half-life (t1/2 = 18.66 h), facilitates on-demand release, and minimizes the risk of hypoglycemia. This approach provides a safe and effective strategy for long-term glycemic management in diabetic patients.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomaterials Science
Biomaterials Science MATERIALS SCIENCE, BIOMATERIALS-
CiteScore
11.50
自引率
4.50%
发文量
556
期刊介绍: Biomaterials Science is an international high impact journal exploring the science of biomaterials and their translation towards clinical use. Its scope encompasses new concepts in biomaterials design, studies into the interaction of biomaterials with the body, and the use of materials to answer fundamental biological questions.
期刊最新文献
Nanotechnology at the crossroads of stem cell medicine. Construction of strontium-loaded injectable lubricating hydrogel and its role in promoting repair of cartilage defects. Thermoresponsive degradable hydrogels with renewable surfaces for protein removal. Aliphatic polycarbonates with acid degradable ketal side groups as multi-pH-responsive immunodrug nanocarriers. Chiral recognition of amino acids through homochiral metallacycle [ZnCl2L]2.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1