E!Canasta:在生物化学课程中教授 ATP 合成和代谢调节的纸牌游戏。

IF 1.2 4区 教育学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Biochemistry and Molecular Biology Education Pub Date : 2024-10-08 DOI:10.1002/bmb.21864
Thalles Henrique Faria de Souza, Eduardo Figueiredo Peloso, Gabriel Gerber Hornink
{"title":"E!Canasta:在生物化学课程中教授 ATP 合成和代谢调节的纸牌游戏。","authors":"Thalles Henrique Faria de Souza, Eduardo Figueiredo Peloso, Gabriel Gerber Hornink","doi":"10.1002/bmb.21864","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding ATP formation is essential for learning metabolism and is central to grasping metabolic processes as a whole. However, due to the high level of abstraction, the number of intermediate substrates, the connections, and integrated regulation, its comprehension often poses a challenge. This and the fact that traditional teaching methods struggle when dealing with highly abstract concepts, game-based strategies present a more concrete and dynamic alternative, which led to the creation of E!Canasta (card game). Developed based on Canasta and adapted in order to improve the learning of concepts, including some of pathway's regulation and integration, E!Canasta motivates students and promotes engagement in a fun activity. Students assemble a sequence of cards representing the glycolysis, acetyl-CoA, Krebs cycle, and electron transport chain, which correspond to the card suits. Strategically, some of the cards hold special feats that simulate some aspects of metabolic regulation and integration (to give or take away points). At the end of the game, points are added up for sequences and cards with positive or negative effects. The game was played with two classes of students enrolled in biochemistry as part of their graduations (86 players). Student perception on gameplay, motivation and understanding was measured through an anonymous Likert scale questionnaire, with very positive results in all questions. Statistically significant correlations were observed regarding the perceived comprehension of pathways and their regulation, and in linking motivation with a positive gaming experience, showcasing that E!Canasta demonstrates considerable educational potential, along with an enjoyable experience for learning ATP synthesis.</p>","PeriodicalId":8830,"journal":{"name":"Biochemistry and Molecular Biology Education","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"E!Canasta: A card game to teach ATP synthesis and metabolic regulation in biochemistry classes.\",\"authors\":\"Thalles Henrique Faria de Souza, Eduardo Figueiredo Peloso, Gabriel Gerber Hornink\",\"doi\":\"10.1002/bmb.21864\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Understanding ATP formation is essential for learning metabolism and is central to grasping metabolic processes as a whole. However, due to the high level of abstraction, the number of intermediate substrates, the connections, and integrated regulation, its comprehension often poses a challenge. This and the fact that traditional teaching methods struggle when dealing with highly abstract concepts, game-based strategies present a more concrete and dynamic alternative, which led to the creation of E!Canasta (card game). Developed based on Canasta and adapted in order to improve the learning of concepts, including some of pathway's regulation and integration, E!Canasta motivates students and promotes engagement in a fun activity. Students assemble a sequence of cards representing the glycolysis, acetyl-CoA, Krebs cycle, and electron transport chain, which correspond to the card suits. Strategically, some of the cards hold special feats that simulate some aspects of metabolic regulation and integration (to give or take away points). At the end of the game, points are added up for sequences and cards with positive or negative effects. The game was played with two classes of students enrolled in biochemistry as part of their graduations (86 players). Student perception on gameplay, motivation and understanding was measured through an anonymous Likert scale questionnaire, with very positive results in all questions. Statistically significant correlations were observed regarding the perceived comprehension of pathways and their regulation, and in linking motivation with a positive gaming experience, showcasing that E!Canasta demonstrates considerable educational potential, along with an enjoyable experience for learning ATP synthesis.</p>\",\"PeriodicalId\":8830,\"journal\":{\"name\":\"Biochemistry and Molecular Biology Education\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemistry and Molecular Biology Education\",\"FirstCategoryId\":\"95\",\"ListUrlMain\":\"https://doi.org/10.1002/bmb.21864\",\"RegionNum\":4,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry and Molecular Biology Education","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.1002/bmb.21864","RegionNum":4,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

了解 ATP 的形成对学习新陈代谢至关重要,也是掌握整个新陈代谢过程的核心。然而,由于其高度抽象性、中间底物的数量、联系和综合调控,对其理解往往构成挑战。传统的教学方法在处理高度抽象的概念时很难奏效,而基于游戏的策略则提供了一种更具体、更动态的替代方法,E!Canasta(纸牌游戏)就是在这种情况下诞生的。E!Canasta 以卡纳斯塔(Canasta)游戏为基础开发,并进行了调整,以改进概念的学习,包括一些路径调节和整合概念的学习。学生将代表糖酵解、乙酰-CoA、克雷布斯循环和电子传递链的一系列卡片组合起来,这些卡片与卡片的花色相对应。从战略上讲,一些卡片上的特殊功能可以模拟新陈代谢调节和整合的某些方面(给分或扣分)。游戏结束时,对具有正面或负面影响的序列和卡片进行加分。两个生物化学班的学生(86 人)在毕业典礼上玩了这个游戏。通过匿名李克特量表问卷调查了学生对游戏性、积极性和理解力的看法,所有问题都得到了非常积极的结果。在对途径及其调节的理解方面,以及在将积极性与积极的游戏体验联系起来方面,都观察到了统计学上的重要相关性,这表明《E!Canasta》在学习 ATP 合成方面具有相当大的教育潜力和愉快的体验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
E!Canasta: A card game to teach ATP synthesis and metabolic regulation in biochemistry classes.

Understanding ATP formation is essential for learning metabolism and is central to grasping metabolic processes as a whole. However, due to the high level of abstraction, the number of intermediate substrates, the connections, and integrated regulation, its comprehension often poses a challenge. This and the fact that traditional teaching methods struggle when dealing with highly abstract concepts, game-based strategies present a more concrete and dynamic alternative, which led to the creation of E!Canasta (card game). Developed based on Canasta and adapted in order to improve the learning of concepts, including some of pathway's regulation and integration, E!Canasta motivates students and promotes engagement in a fun activity. Students assemble a sequence of cards representing the glycolysis, acetyl-CoA, Krebs cycle, and electron transport chain, which correspond to the card suits. Strategically, some of the cards hold special feats that simulate some aspects of metabolic regulation and integration (to give or take away points). At the end of the game, points are added up for sequences and cards with positive or negative effects. The game was played with two classes of students enrolled in biochemistry as part of their graduations (86 players). Student perception on gameplay, motivation and understanding was measured through an anonymous Likert scale questionnaire, with very positive results in all questions. Statistically significant correlations were observed regarding the perceived comprehension of pathways and their regulation, and in linking motivation with a positive gaming experience, showcasing that E!Canasta demonstrates considerable educational potential, along with an enjoyable experience for learning ATP synthesis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biochemistry and Molecular Biology Education
Biochemistry and Molecular Biology Education 生物-生化与分子生物学
CiteScore
2.60
自引率
14.30%
发文量
99
审稿时长
6-12 weeks
期刊介绍: The aim of BAMBED is to enhance teacher preparation and student learning in Biochemistry, Molecular Biology, and related sciences such as Biophysics and Cell Biology, by promoting the world-wide dissemination of educational materials. BAMBED seeks and communicates articles on many topics, including: Innovative techniques in teaching and learning. New pedagogical approaches. Research in biochemistry and molecular biology education. Reviews on emerging areas of Biochemistry and Molecular Biology to provide background for the preparation of lectures, seminars, student presentations, dissertations, etc. Historical Reviews describing "Paths to Discovery". Novel and proven laboratory experiments that have both skill-building and discovery-based characteristics. Reviews of relevant textbooks, software, and websites. Descriptions of software for educational use. Descriptions of multimedia materials such as tutorials on various aspects of biochemistry and molecular biology.
期刊最新文献
Issue Information Cinemeducation improves early clinical exposure to inborn errors of metabolism. The development of supplemental multimedia learning modules and their impact on student learning in food biotechnology courses. Encourage self-learning and collaborative learning through gamification during COVID-19 pandemic: A case study for teaching biochemistry. A plant mutant screen CURE integrated with core biology concepts showed effectiveness in course design and students' perceived learning gains.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1