{"title":"用于乳腺癌治疗的金合欢稳定多柔比星负载金纳米粒子的合成与表征","authors":"Laxmi Devi, Poonam Kushwaha, Tarique Mahmood Ansari, Amit Rao, Ashish Kumar","doi":"10.1055/a-2418-2200","DOIUrl":null,"url":null,"abstract":"<p><p>The targeted delivery of drugs is vital in breast cancer treatment due to its ability to produce long-lasting therapeutic effects with minimal side effects. This study reports the successful development of doxorubicin hydrochloride (DOX)-loaded colloidal gold nanoparticles stabilized with acacia gum (AG). Optimization studies varied AG concentrations (0.25% to 3% w/v) to determine optimal conditions for nanoparticle synthesis. The resulting acacia stabilized gold nanoparticles (AGNPs) were characterized using various techniques including high-resolution transmission electron microscopy (HR-TEM), powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), ultraviolet-visible spectroscopy, Fourier-transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FE-SEM), and selected area electron diffraction (SAED). In vitro drug release studies demonstrated a higher release rate of DOX in sodium acetate buffer (pH 5.0) compared to phosphate buffer saline (pH 7.4), suggesting an enhanced therapeutic efficacy in acidic tumor environments. Cytotoxicity of DOX-AGNPs and free DOX was assessed in human breast cancer cells (MDA-MB-231). The DOX-AGNPs exhibited significantly greater cytotoxicity, indicating enhanced efficacy in targeting cancer cells. This enhancement suggests that adsorbing DOX on the surface of gold nanoparticles can improve drug delivery and effectiveness, potentially reducing side effects compared to pure DOX and traditional delivery methods. Stability tests conducted over six months at 25±1°C showed significant changes in particle size and PDI, suggesting limited stability under these conditions. Overall, the acacia-stabilized gold nanoparticles synthesized in this study exhibit promising characteristics for drug delivery applications, particularly in cancer therapy, with effective drug loading, controlled release, and favorable physicochemical properties.</p>","PeriodicalId":11451,"journal":{"name":"Drug Research","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis and Characterization of Acacia-Stabilized Doxorubicin-Loaded Gold Nanoparticles for Breast Cancer Therapy.\",\"authors\":\"Laxmi Devi, Poonam Kushwaha, Tarique Mahmood Ansari, Amit Rao, Ashish Kumar\",\"doi\":\"10.1055/a-2418-2200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The targeted delivery of drugs is vital in breast cancer treatment due to its ability to produce long-lasting therapeutic effects with minimal side effects. This study reports the successful development of doxorubicin hydrochloride (DOX)-loaded colloidal gold nanoparticles stabilized with acacia gum (AG). Optimization studies varied AG concentrations (0.25% to 3% w/v) to determine optimal conditions for nanoparticle synthesis. The resulting acacia stabilized gold nanoparticles (AGNPs) were characterized using various techniques including high-resolution transmission electron microscopy (HR-TEM), powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), ultraviolet-visible spectroscopy, Fourier-transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FE-SEM), and selected area electron diffraction (SAED). In vitro drug release studies demonstrated a higher release rate of DOX in sodium acetate buffer (pH 5.0) compared to phosphate buffer saline (pH 7.4), suggesting an enhanced therapeutic efficacy in acidic tumor environments. Cytotoxicity of DOX-AGNPs and free DOX was assessed in human breast cancer cells (MDA-MB-231). The DOX-AGNPs exhibited significantly greater cytotoxicity, indicating enhanced efficacy in targeting cancer cells. This enhancement suggests that adsorbing DOX on the surface of gold nanoparticles can improve drug delivery and effectiveness, potentially reducing side effects compared to pure DOX and traditional delivery methods. Stability tests conducted over six months at 25±1°C showed significant changes in particle size and PDI, suggesting limited stability under these conditions. Overall, the acacia-stabilized gold nanoparticles synthesized in this study exhibit promising characteristics for drug delivery applications, particularly in cancer therapy, with effective drug loading, controlled release, and favorable physicochemical properties.</p>\",\"PeriodicalId\":11451,\"journal\":{\"name\":\"Drug Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1055/a-2418-2200\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1055/a-2418-2200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Synthesis and Characterization of Acacia-Stabilized Doxorubicin-Loaded Gold Nanoparticles for Breast Cancer Therapy.
The targeted delivery of drugs is vital in breast cancer treatment due to its ability to produce long-lasting therapeutic effects with minimal side effects. This study reports the successful development of doxorubicin hydrochloride (DOX)-loaded colloidal gold nanoparticles stabilized with acacia gum (AG). Optimization studies varied AG concentrations (0.25% to 3% w/v) to determine optimal conditions for nanoparticle synthesis. The resulting acacia stabilized gold nanoparticles (AGNPs) were characterized using various techniques including high-resolution transmission electron microscopy (HR-TEM), powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), ultraviolet-visible spectroscopy, Fourier-transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FE-SEM), and selected area electron diffraction (SAED). In vitro drug release studies demonstrated a higher release rate of DOX in sodium acetate buffer (pH 5.0) compared to phosphate buffer saline (pH 7.4), suggesting an enhanced therapeutic efficacy in acidic tumor environments. Cytotoxicity of DOX-AGNPs and free DOX was assessed in human breast cancer cells (MDA-MB-231). The DOX-AGNPs exhibited significantly greater cytotoxicity, indicating enhanced efficacy in targeting cancer cells. This enhancement suggests that adsorbing DOX on the surface of gold nanoparticles can improve drug delivery and effectiveness, potentially reducing side effects compared to pure DOX and traditional delivery methods. Stability tests conducted over six months at 25±1°C showed significant changes in particle size and PDI, suggesting limited stability under these conditions. Overall, the acacia-stabilized gold nanoparticles synthesized in this study exhibit promising characteristics for drug delivery applications, particularly in cancer therapy, with effective drug loading, controlled release, and favorable physicochemical properties.
期刊介绍:
Drug Research (formerly Arzneimittelforschung) is an international peer-reviewed journal with expedited processing times presenting the very latest research results related to novel and established drug molecules and the evaluation of new drug development. A key focus of the publication is translational medicine and the application of biological discoveries in the development of drugs for use in the clinical environment. Articles and experimental data from across the field of drug research address not only the issue of drug discovery, but also the mathematical and statistical methods for evaluating results from industrial investigations and clinical trials. Publishing twelve times a year, Drug Research includes original research articles as well as reviews, commentaries and short communications in the following areas: analytics applied to clinical trials chemistry and biochemistry clinical and experimental pharmacology drug interactions efficacy testing pharmacodynamics pharmacokinetics teratology toxicology.