FAVOR-GPT:全基因组变异功能注释的自然语言生成界面。

IF 2.4 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Bioinformatics advances Pub Date : 2024-09-28 eCollection Date: 2024-01-01 DOI:10.1093/bioadv/vbae143
Thomas Cheng Li, Hufeng Zhou, Vineet Verma, Xiangru Tang, Yanjun Shao, Eric Van Buren, Zhiping Weng, Mark Gerstein, Benjamin Neale, Shamil R Sunyaev, Xihong Lin
{"title":"FAVOR-GPT:全基因组变异功能注释的自然语言生成界面。","authors":"Thomas Cheng Li, Hufeng Zhou, Vineet Verma, Xiangru Tang, Yanjun Shao, Eric Van Buren, Zhiping Weng, Mark Gerstein, Benjamin Neale, Shamil R Sunyaev, Xihong Lin","doi":"10.1093/bioadv/vbae143","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Functional Annotation of genomic Variants Online Resources (FAVOR) offers multi-faceted, whole genome variant functional annotations, which is essential for Whole Genome and Exome Sequencing (WGS/WES) analysis and the functional prioritization of disease-associated variants. A versatile chatbot designed to facilitate informative interpretation and interactive, user-centric summary of the whole genome variant functional annotation data in the FAVOR database is needed.</p><p><strong>Results: </strong>We have developed FAVOR-GPT, a generative natural language interface powered by integrating large language models (LLMs) and FAVOR. It is developed based on the Retrieval Augmented Generation (RAG) approach, and complements the original FAVOR portal, enhancing usability for users, especially those without specialized expertise. FAVOR-GPT simplifies raw annotations by providing interpretable explanations and result summaries in response to the user's prompt. It shows high accuracy when cross-referencing with the FAVOR database, underscoring the robustness of the retrieval framework.</p><p><strong>Availability and implementation: </strong>Researchers can access FAVOR-GPT at FAVOR's main website (https://favor.genohub.org).</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11461909/pdf/","citationCount":"0","resultStr":"{\"title\":\"FAVOR-GPT: a generative natural language interface to whole genome variant functional annotations.\",\"authors\":\"Thomas Cheng Li, Hufeng Zhou, Vineet Verma, Xiangru Tang, Yanjun Shao, Eric Van Buren, Zhiping Weng, Mark Gerstein, Benjamin Neale, Shamil R Sunyaev, Xihong Lin\",\"doi\":\"10.1093/bioadv/vbae143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Motivation: </strong>Functional Annotation of genomic Variants Online Resources (FAVOR) offers multi-faceted, whole genome variant functional annotations, which is essential for Whole Genome and Exome Sequencing (WGS/WES) analysis and the functional prioritization of disease-associated variants. A versatile chatbot designed to facilitate informative interpretation and interactive, user-centric summary of the whole genome variant functional annotation data in the FAVOR database is needed.</p><p><strong>Results: </strong>We have developed FAVOR-GPT, a generative natural language interface powered by integrating large language models (LLMs) and FAVOR. It is developed based on the Retrieval Augmented Generation (RAG) approach, and complements the original FAVOR portal, enhancing usability for users, especially those without specialized expertise. FAVOR-GPT simplifies raw annotations by providing interpretable explanations and result summaries in response to the user's prompt. It shows high accuracy when cross-referencing with the FAVOR database, underscoring the robustness of the retrieval framework.</p><p><strong>Availability and implementation: </strong>Researchers can access FAVOR-GPT at FAVOR's main website (https://favor.genohub.org).</p>\",\"PeriodicalId\":72368,\"journal\":{\"name\":\"Bioinformatics advances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11461909/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/bioadv/vbae143\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbae143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

动因:基因组变异在线资源功能注释(FAVOR)提供了多方面的全基因组变异功能注释,这对于全基因组和外显子组测序(WGS/WES)分析以及疾病相关变异的功能优先排序至关重要。我们需要一个多功能聊天机器人,以方便对 FAVOR 数据库中的全基因组变异体功能注释数据进行信息解读和以用户为中心的交互式总结:我们开发了 FAVOR-GPT,这是一个通过整合大型语言模型(LLMs)和 FAVOR 来驱动的生成式自然语言界面。它是基于检索增强生成(RAG)方法开发的,是对原有 FAVOR 门户网站的补充,提高了用户的可用性,尤其是那些没有专业知识的用户。FAVOR-GPT 根据用户的提示提供可解释的解释和结果摘要,从而简化了原始注释。在与 FAVOR 数据库交叉引用时,它显示出很高的准确性,突出了检索框架的稳健性:研究人员可从 FAVOR 的主网站 (https://favor.genohub.org) 访问 FAVOR-GPT。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FAVOR-GPT: a generative natural language interface to whole genome variant functional annotations.

Motivation: Functional Annotation of genomic Variants Online Resources (FAVOR) offers multi-faceted, whole genome variant functional annotations, which is essential for Whole Genome and Exome Sequencing (WGS/WES) analysis and the functional prioritization of disease-associated variants. A versatile chatbot designed to facilitate informative interpretation and interactive, user-centric summary of the whole genome variant functional annotation data in the FAVOR database is needed.

Results: We have developed FAVOR-GPT, a generative natural language interface powered by integrating large language models (LLMs) and FAVOR. It is developed based on the Retrieval Augmented Generation (RAG) approach, and complements the original FAVOR portal, enhancing usability for users, especially those without specialized expertise. FAVOR-GPT simplifies raw annotations by providing interpretable explanations and result summaries in response to the user's prompt. It shows high accuracy when cross-referencing with the FAVOR database, underscoring the robustness of the retrieval framework.

Availability and implementation: Researchers can access FAVOR-GPT at FAVOR's main website (https://favor.genohub.org).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
期刊最新文献
motifbreakR v2: expanded variant analysis including indels and integrated evidence from transcription factor binding databases. TransAnnot-a fast transcriptome annotation pipeline. PatchProt: hydrophobic patch prediction using protein foundation models. Accelerating protein-protein interaction screens with reduced AlphaFold-Multimer sampling. CAPTVRED: an automated pipeline for viral tracking and discovery from capture-based metagenomics samples.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1