基于派利尔同态加密的定时释放电子投票方案

IF 3 3区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IEEE Transactions on Sustainable Computing Pub Date : 2024-03-08 DOI:10.1109/TSUSC.2024.3371544
Ke Yuan;Peng Sang;Jian Ge;Bingcai Zhou;Chunfu Jia
{"title":"基于派利尔同态加密的定时释放电子投票方案","authors":"Ke Yuan;Peng Sang;Jian Ge;Bingcai Zhou;Chunfu Jia","doi":"10.1109/TSUSC.2024.3371544","DOIUrl":null,"url":null,"abstract":"E-Voting is widely used in many social, economic, political and cultural fields for its convenience, efficiency and greenness, but how to guarantee the fairness of e-voting and the controllability of human intervention needs further in-depth research and exploration. Although the introduction of homomorphic encryption algorithm solves the problem of ballot privacy calculation, and most of these schemes solve the problem of private key confidentiality by using or overlaying multiple different methods of saving private keys, its security will be questioned as long as there is a possibility of human intervention in the saving process. To solve this problem, we propose a timed-release e-voting scheme based on Paillier homomorphic encryption. We analyze the semantic security of the ballot formally by defining the security game, and realize the legitimacy check of the ballot ciphertext through the idea of partial knowledge proof. Property analysis shows that this scheme satisfies the basic properties of the security requirements of the e-voting scheme. Performance analysis shows that this scheme is feasible to implement in practical voting.","PeriodicalId":13268,"journal":{"name":"IEEE Transactions on Sustainable Computing","volume":"9 5","pages":"740-753"},"PeriodicalIF":3.0000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Timed-Release E-Voting Scheme Based on Paillier Homomorphic Encryption\",\"authors\":\"Ke Yuan;Peng Sang;Jian Ge;Bingcai Zhou;Chunfu Jia\",\"doi\":\"10.1109/TSUSC.2024.3371544\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"E-Voting is widely used in many social, economic, political and cultural fields for its convenience, efficiency and greenness, but how to guarantee the fairness of e-voting and the controllability of human intervention needs further in-depth research and exploration. Although the introduction of homomorphic encryption algorithm solves the problem of ballot privacy calculation, and most of these schemes solve the problem of private key confidentiality by using or overlaying multiple different methods of saving private keys, its security will be questioned as long as there is a possibility of human intervention in the saving process. To solve this problem, we propose a timed-release e-voting scheme based on Paillier homomorphic encryption. We analyze the semantic security of the ballot formally by defining the security game, and realize the legitimacy check of the ballot ciphertext through the idea of partial knowledge proof. Property analysis shows that this scheme satisfies the basic properties of the security requirements of the e-voting scheme. Performance analysis shows that this scheme is feasible to implement in practical voting.\",\"PeriodicalId\":13268,\"journal\":{\"name\":\"IEEE Transactions on Sustainable Computing\",\"volume\":\"9 5\",\"pages\":\"740-753\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Sustainable Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10460493/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10460493/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

电子投票以其便捷、高效、绿色等特点被广泛应用于社会、经济、政治、文化等诸多领域,但如何保证电子投票的公平性和人为干预的可控性还需要进一步深入研究和探索。虽然同态加密算法的引入解决了选票隐私计算的问题,而且这些方案大多通过使用或叠加多种不同的私钥保存方式解决了私钥保密的问题,但只要在保存过程中存在人为干预的可能,其安全性就会受到质疑。为了解决这个问题,我们提出了一种基于 Paillier 同态加密的定时释放电子投票方案。我们通过定义安全博弈正式分析了选票的语义安全性,并通过部分知识证明的思想实现了选票密文的合法性检查。属性分析表明,该方案满足电子投票方案安全要求的基本属性。性能分析表明,该方案在实际投票中是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Timed-Release E-Voting Scheme Based on Paillier Homomorphic Encryption
E-Voting is widely used in many social, economic, political and cultural fields for its convenience, efficiency and greenness, but how to guarantee the fairness of e-voting and the controllability of human intervention needs further in-depth research and exploration. Although the introduction of homomorphic encryption algorithm solves the problem of ballot privacy calculation, and most of these schemes solve the problem of private key confidentiality by using or overlaying multiple different methods of saving private keys, its security will be questioned as long as there is a possibility of human intervention in the saving process. To solve this problem, we propose a timed-release e-voting scheme based on Paillier homomorphic encryption. We analyze the semantic security of the ballot formally by defining the security game, and realize the legitimacy check of the ballot ciphertext through the idea of partial knowledge proof. Property analysis shows that this scheme satisfies the basic properties of the security requirements of the e-voting scheme. Performance analysis shows that this scheme is feasible to implement in practical voting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Sustainable Computing
IEEE Transactions on Sustainable Computing Mathematics-Control and Optimization
CiteScore
7.70
自引率
2.60%
发文量
54
期刊最新文献
Editorial Dynamic Event-Triggered State Estimation for Power Harmonics With Quantization Effects: A Zonotopic Set-Membership Approach 2024 Reviewers List Deadline-Aware Cost and Energy Efficient Offloading in Mobile Edge Computing Impacts of Increasing Temperature and Relative Humidity in Air-Cooled Tropical Data Centers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1