气冷式热带数据中心温度和相对湿度上升的影响

IF 3 3区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IEEE Transactions on Sustainable Computing Pub Date : 2024-03-20 DOI:10.1109/TSUSC.2024.3379550
Duc Van Le;Jing Zhou;Rongrong Wang;Rui Tan;Fei Duan
{"title":"气冷式热带数据中心温度和相对湿度上升的影响","authors":"Duc Van Le;Jing Zhou;Rongrong Wang;Rui Tan;Fei Duan","doi":"10.1109/TSUSC.2024.3379550","DOIUrl":null,"url":null,"abstract":"Data centers (DCs) are power-intensive facilities which use a significant amount of energy for cooling the servers. Increasing the temperature and relative humidity (RH) setpoints is a rule-of-thumb approach to reducing the DC energy usage. However, the high temperature and RH may undermine the server's reliability. Before we can choose the proper temperature and RH settings, it is essential to understand how the temperature and RH setpoints affect the DC power usage and server's reliability. To this end, we constructed and experimented with an air-cooled DC testbed in Singapore, which consists of a direct expansion cooling system and 521 servers running real-world application workloads. This paper presents the key measurement results and observations from our 11-month experiments. Our results suggest that by operating at a supply air temperature setpoints of 29\n<inline-formula><tex-math>$^{\\circ }$</tex-math></inline-formula>\nC, our testbed achieves substantial cooling power saving with little impact on the server's reliability. Furthermore, we present a total cost of ownership (TCO) analysis framework which guides settings of the temperature and RH for a DC. Our observations and TCO analysis framework will be useful to future efforts in building and operating air-cooled DCs in tropics and beyond.","PeriodicalId":13268,"journal":{"name":"IEEE Transactions on Sustainable Computing","volume":"9 5","pages":"790-802"},"PeriodicalIF":3.0000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impacts of Increasing Temperature and Relative Humidity in Air-Cooled Tropical Data Centers\",\"authors\":\"Duc Van Le;Jing Zhou;Rongrong Wang;Rui Tan;Fei Duan\",\"doi\":\"10.1109/TSUSC.2024.3379550\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data centers (DCs) are power-intensive facilities which use a significant amount of energy for cooling the servers. Increasing the temperature and relative humidity (RH) setpoints is a rule-of-thumb approach to reducing the DC energy usage. However, the high temperature and RH may undermine the server's reliability. Before we can choose the proper temperature and RH settings, it is essential to understand how the temperature and RH setpoints affect the DC power usage and server's reliability. To this end, we constructed and experimented with an air-cooled DC testbed in Singapore, which consists of a direct expansion cooling system and 521 servers running real-world application workloads. This paper presents the key measurement results and observations from our 11-month experiments. Our results suggest that by operating at a supply air temperature setpoints of 29\\n<inline-formula><tex-math>$^{\\\\circ }$</tex-math></inline-formula>\\nC, our testbed achieves substantial cooling power saving with little impact on the server's reliability. Furthermore, we present a total cost of ownership (TCO) analysis framework which guides settings of the temperature and RH for a DC. Our observations and TCO analysis framework will be useful to future efforts in building and operating air-cooled DCs in tropics and beyond.\",\"PeriodicalId\":13268,\"journal\":{\"name\":\"IEEE Transactions on Sustainable Computing\",\"volume\":\"9 5\",\"pages\":\"790-802\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Sustainable Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10476723/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10476723/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

数据中心(DC)是电力密集型设施,需要消耗大量能源来冷却服务器。提高温度和相对湿度(RH)设定值是减少 DC 能源消耗的一个常用方法。然而,高温和相对湿度可能会降低服务器的可靠性。在选择合适的温度和相对湿度设置之前,我们必须了解温度和相对湿度设置点如何影响直流电能使用和服务器的可靠性。为此,我们在新加坡建造了一个风冷直流试验台并进行了实验,该试验台由直接膨胀冷却系统和运行实际应用工作负载的 521 台服务器组成。本文介绍了为期 11 个月实验的主要测量结果和观察结果。我们的结果表明,通过在 29$^{\circ }$C 的供气温度设定值下运行,我们的测试平台实现了大量的制冷节能,而对服务器的可靠性影响很小。此外,我们还提出了一个总拥有成本(TCO)分析框架,用于指导直流电的温度和相对湿度设置。我们的观察结果和总拥有成本分析框架将有助于今后在热带地区及其他地区建造和运行风冷直流电。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Impacts of Increasing Temperature and Relative Humidity in Air-Cooled Tropical Data Centers
Data centers (DCs) are power-intensive facilities which use a significant amount of energy for cooling the servers. Increasing the temperature and relative humidity (RH) setpoints is a rule-of-thumb approach to reducing the DC energy usage. However, the high temperature and RH may undermine the server's reliability. Before we can choose the proper temperature and RH settings, it is essential to understand how the temperature and RH setpoints affect the DC power usage and server's reliability. To this end, we constructed and experimented with an air-cooled DC testbed in Singapore, which consists of a direct expansion cooling system and 521 servers running real-world application workloads. This paper presents the key measurement results and observations from our 11-month experiments. Our results suggest that by operating at a supply air temperature setpoints of 29 $^{\circ }$ C, our testbed achieves substantial cooling power saving with little impact on the server's reliability. Furthermore, we present a total cost of ownership (TCO) analysis framework which guides settings of the temperature and RH for a DC. Our observations and TCO analysis framework will be useful to future efforts in building and operating air-cooled DCs in tropics and beyond.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
相关文献
二甲双胍通过HDAC6和FoxO3a转录调控肌肉生长抑制素诱导肌肉萎缩
IF 8.9 1区 医学Journal of Cachexia, Sarcopenia and MusclePub Date : 2021-11-02 DOI: 10.1002/jcsm.12833
Min Ju Kang, Ji Wook Moon, Jung Ok Lee, Ji Hae Kim, Eun Jeong Jung, Su Jin Kim, Joo Yeon Oh, Sang Woo Wu, Pu Reum Lee, Sun Hwa Park, Hyeon Soo Kim
具有疾病敏感单倍型的非亲属供体脐带血移植后的1型糖尿病
IF 3.2 3区 医学Journal of Diabetes InvestigationPub Date : 2022-11-02 DOI: 10.1111/jdi.13939
Kensuke Matsumoto, Taisuke Matsuyama, Ritsu Sumiyoshi, Matsuo Takuji, Tadashi Yamamoto, Ryosuke Shirasaki, Haruko Tashiro
封面:蛋白质组学分析确定IRSp53和fastin是PRV输出和直接细胞-细胞传播的关键
IF 3.4 4区 生物学ProteomicsPub Date : 2019-12-02 DOI: 10.1002/pmic.201970201
Fei-Long Yu, Huan Miao, Jinjin Xia, Fan Jia, Huadong Wang, Fuqiang Xu, Lin Guo
来源期刊
IEEE Transactions on Sustainable Computing
IEEE Transactions on Sustainable Computing Mathematics-Control and Optimization
CiteScore
7.70
自引率
2.60%
发文量
54
期刊最新文献
2024 Reviewers List* Guest Editorial of the Special Section on AI Powered Edge Computing for IoT Restoration-Aware Sleep Scheduling Framework in Energy Harvesting Internet of Things: A Deep Reinforcement Learning Approach Beyond Text: Detecting Image Propaganda on Online Social Networks Merged Path: Distributed Data Dissemination in Mobile Sinks Sensor Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1