偏远地区混合动力系统的智能能源管理策略和规模确定方法

Moufida Saadi;Dib Djalel;Billel Meghni;Djamila Rekioua
{"title":"偏远地区混合动力系统的智能能源管理策略和规模确定方法","authors":"Moufida Saadi;Dib Djalel;Billel Meghni;Djamila Rekioua","doi":"10.23919/CJEE.2024.000091","DOIUrl":null,"url":null,"abstract":"In this study, a comprehensive approach is presented for the sizing and management of hybrid renewable energy systems (HRESs) that incorporate a variety of energy sources, while emphasizing the role of artificial neural networks (ANNs) in system management. For optimal sizing of an HRES, the monthly average method wherein historical weather data are used to calculate the monthly averages of solar irradiance and wind speed, offering a well-balanced strategy for system sizing. This ensures that the HRES is appropriately scaled to meet the actual energy requirements of the specified location, avoiding the pitfalls of over- and under-sizing, and thereby enhancing the operational efficiency. Furthermore, the study details a cutting-edge strategy that employs ANNs for managing the inherent complexities of HRESs. It elaborates on the design, modeling, and control strategies for the HRES components by utilizing Matlab/Simulink for implementation. The findings demonstrate the proficiency of the ANN -based power manager in determining the operational modes guided by a specifically designed flowchart. By integrating ANN-driven energy management strategies into an HRES, the proposed approach marks a significant advancement in system adaptability, precision control, and efficiency, thereby maximizing the effective utilization of renewable resources.","PeriodicalId":36428,"journal":{"name":"Chinese Journal of Electrical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10707120","citationCount":"0","resultStr":"{\"title\":\"Intelligent Energy Management Strategy and Sizing Methodology for Hybrid Systems in Isolated Regions\",\"authors\":\"Moufida Saadi;Dib Djalel;Billel Meghni;Djamila Rekioua\",\"doi\":\"10.23919/CJEE.2024.000091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, a comprehensive approach is presented for the sizing and management of hybrid renewable energy systems (HRESs) that incorporate a variety of energy sources, while emphasizing the role of artificial neural networks (ANNs) in system management. For optimal sizing of an HRES, the monthly average method wherein historical weather data are used to calculate the monthly averages of solar irradiance and wind speed, offering a well-balanced strategy for system sizing. This ensures that the HRES is appropriately scaled to meet the actual energy requirements of the specified location, avoiding the pitfalls of over- and under-sizing, and thereby enhancing the operational efficiency. Furthermore, the study details a cutting-edge strategy that employs ANNs for managing the inherent complexities of HRESs. It elaborates on the design, modeling, and control strategies for the HRES components by utilizing Matlab/Simulink for implementation. The findings demonstrate the proficiency of the ANN -based power manager in determining the operational modes guided by a specifically designed flowchart. By integrating ANN-driven energy management strategies into an HRES, the proposed approach marks a significant advancement in system adaptability, precision control, and efficiency, thereby maximizing the effective utilization of renewable resources.\",\"PeriodicalId\":36428,\"journal\":{\"name\":\"Chinese Journal of Electrical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10707120\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Electrical Engineering\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10707120/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Electrical Engineering","FirstCategoryId":"1087","ListUrlMain":"https://ieeexplore.ieee.org/document/10707120/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种综合方法,用于确定包含多种能源的混合可再生能源系统(HRES)的规模和管理,同时强调了人工神经网络(ANN)在系统管理中的作用。为了优化可再生能源混合系统的规模,采用了月平均法,即利用历史天气数据计算太阳能辐照度和风速的月平均值,为系统规模的确定提供了一种均衡的策略。这可确保太阳能热发电系统的规模适当,以满足指定地点的实际能源需求,避免规模过大或过小的陷阱,从而提高运行效率。此外,该研究还详细介绍了一种先进的策略,即利用人工智能网络来管理 HRES 固有的复杂性。研究详细阐述了利用 Matlab/Simulink 实现 HRES 组件的设计、建模和控制策略。研究结果表明,在专门设计的流程图指导下,基于 ANN 的电力管理器能够熟练地确定运行模式。通过将 ANN 驱动的能源管理策略集成到 HRES 中,所提出的方法标志着在系统适应性、精确控制和效率方面的重大进步,从而最大限度地有效利用可再生资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Intelligent Energy Management Strategy and Sizing Methodology for Hybrid Systems in Isolated Regions
In this study, a comprehensive approach is presented for the sizing and management of hybrid renewable energy systems (HRESs) that incorporate a variety of energy sources, while emphasizing the role of artificial neural networks (ANNs) in system management. For optimal sizing of an HRES, the monthly average method wherein historical weather data are used to calculate the monthly averages of solar irradiance and wind speed, offering a well-balanced strategy for system sizing. This ensures that the HRES is appropriately scaled to meet the actual energy requirements of the specified location, avoiding the pitfalls of over- and under-sizing, and thereby enhancing the operational efficiency. Furthermore, the study details a cutting-edge strategy that employs ANNs for managing the inherent complexities of HRESs. It elaborates on the design, modeling, and control strategies for the HRES components by utilizing Matlab/Simulink for implementation. The findings demonstrate the proficiency of the ANN -based power manager in determining the operational modes guided by a specifically designed flowchart. By integrating ANN-driven energy management strategies into an HRES, the proposed approach marks a significant advancement in system adaptability, precision control, and efficiency, thereby maximizing the effective utilization of renewable resources.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chinese Journal of Electrical Engineering
Chinese Journal of Electrical Engineering Energy-Energy Engineering and Power Technology
CiteScore
7.80
自引率
0.00%
发文量
621
审稿时长
12 weeks
期刊最新文献
Contents Front Cover Hybrid Modulation Strategy with Voltage Balancing Control for Four-Level Neutral-Point Clamped Converters Design-Oriented Transient Stability Assessment for Droop-Controlled Converter Considering Grid Voltage Phase-Angle Jump Dynamic Reconstruction of Total-Cross-Tied Photovoltaic Array Based on Arrays Using an Improved Dung Beetle Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1