通过选择性溶剂退火增强 Bottlebrush 接枝共聚物的仿生力学。

IF 4.2 3区 化学 Q2 POLYMER SCIENCE Macromolecular Rapid Communications Pub Date : 2024-10-10 DOI:10.1002/marc.202400569
Akmal Z Umarov, Joseph Collins, Evgeniia A Nikitina, Ioannis Moutsios, Martin Rosenthal, Andrey V Dobrynin, Sergei S Sheiko, Dimitri A Ivanov
{"title":"通过选择性溶剂退火增强 Bottlebrush 接枝共聚物的仿生力学。","authors":"Akmal Z Umarov, Joseph Collins, Evgeniia A Nikitina, Ioannis Moutsios, Martin Rosenthal, Andrey V Dobrynin, Sergei S Sheiko, Dimitri A Ivanov","doi":"10.1002/marc.202400569","DOIUrl":null,"url":null,"abstract":"<p><p>Self-assembled networks of bottlebrush copolymers are promising materials for biomedical applications due to a unique combination of ultra-softness and strain-adaptive stiffening, characteristic of soft biological tissues. Transitioning from ABA linear-brush-linear triblock copolymers to A-g-B bottlebrush graft copolymer architectures allows significant increasing the mechanical strength of thermoplastic elastomers. Using real-time synchrotron small-angle X-ray scattering, it is shown that annealing of A-g-B elastomers in a selective solvent for the linear A blocks allows for substantial network reconfiguration, resulting in an increase of both the A domain size and the distance between the domains. The corresponding increases in the aggregation number and extension of bottlebrush strands lead to a significant increase of the strain-stiffening parameter up to 0.7, approaching values characteristic of the brain and skin tissues. Network reconfiguration without disassembly is an efficient approach to adjusting the mechanical performance of tissue-mimetic materials to meet the needs of diverse biomedical applications.</p>","PeriodicalId":205,"journal":{"name":"Macromolecular Rapid Communications","volume":" ","pages":"e2400569"},"PeriodicalIF":4.2000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing the Biomimetic Mechanics of Bottlebrush Graft-Copolymers through Selective Solvent Annealing.\",\"authors\":\"Akmal Z Umarov, Joseph Collins, Evgeniia A Nikitina, Ioannis Moutsios, Martin Rosenthal, Andrey V Dobrynin, Sergei S Sheiko, Dimitri A Ivanov\",\"doi\":\"10.1002/marc.202400569\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Self-assembled networks of bottlebrush copolymers are promising materials for biomedical applications due to a unique combination of ultra-softness and strain-adaptive stiffening, characteristic of soft biological tissues. Transitioning from ABA linear-brush-linear triblock copolymers to A-g-B bottlebrush graft copolymer architectures allows significant increasing the mechanical strength of thermoplastic elastomers. Using real-time synchrotron small-angle X-ray scattering, it is shown that annealing of A-g-B elastomers in a selective solvent for the linear A blocks allows for substantial network reconfiguration, resulting in an increase of both the A domain size and the distance between the domains. The corresponding increases in the aggregation number and extension of bottlebrush strands lead to a significant increase of the strain-stiffening parameter up to 0.7, approaching values characteristic of the brain and skin tissues. Network reconfiguration without disassembly is an efficient approach to adjusting the mechanical performance of tissue-mimetic materials to meet the needs of diverse biomedical applications.</p>\",\"PeriodicalId\":205,\"journal\":{\"name\":\"Macromolecular Rapid Communications\",\"volume\":\" \",\"pages\":\"e2400569\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular Rapid Communications\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/marc.202400569\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Rapid Communications","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/marc.202400569","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

瓶丛共聚物的自组装网络具有软生物组织所特有的超柔软性和应变适应刚性的独特组合,是一种很有前景的生物医学应用材料。从 ABA 线性-毛刷线性三嵌段共聚物过渡到 A-g-B 瓶丛接枝共聚物结构,可以显著提高热塑性弹性体的机械强度。研究利用实时同步加速器小角 X 射线散射技术表明,在线性 A 嵌段的选择性溶剂中对 A-g-B 弹性体进行退火处理,可大幅重构网络,从而增加 A 结构域的尺寸和结构域之间的距离。聚集数的相应增加和底层链的延伸导致应变刚度参数显著增加,最高可达 0.7,接近大脑和皮肤组织的特征值。无需拆卸的网络重组是调整组织模拟材料机械性能的有效方法,可满足各种生物医学应用的需要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing the Biomimetic Mechanics of Bottlebrush Graft-Copolymers through Selective Solvent Annealing.

Self-assembled networks of bottlebrush copolymers are promising materials for biomedical applications due to a unique combination of ultra-softness and strain-adaptive stiffening, characteristic of soft biological tissues. Transitioning from ABA linear-brush-linear triblock copolymers to A-g-B bottlebrush graft copolymer architectures allows significant increasing the mechanical strength of thermoplastic elastomers. Using real-time synchrotron small-angle X-ray scattering, it is shown that annealing of A-g-B elastomers in a selective solvent for the linear A blocks allows for substantial network reconfiguration, resulting in an increase of both the A domain size and the distance between the domains. The corresponding increases in the aggregation number and extension of bottlebrush strands lead to a significant increase of the strain-stiffening parameter up to 0.7, approaching values characteristic of the brain and skin tissues. Network reconfiguration without disassembly is an efficient approach to adjusting the mechanical performance of tissue-mimetic materials to meet the needs of diverse biomedical applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Macromolecular Rapid Communications
Macromolecular Rapid Communications 工程技术-高分子科学
CiteScore
7.70
自引率
6.50%
发文量
477
审稿时长
1.4 months
期刊介绍: Macromolecular Rapid Communications publishes original research in polymer science, ranging from chemistry and physics of polymers to polymers in materials science and life sciences.
期刊最新文献
Large-scale Conformational Changes of Diindole Functional Groups Driven by Cation-π Interactions and the Toughening Mechanism of Thermosets. Recyclable Amphiphilic Magnetic-responsive Mixed-Shell Nanoparticles With High Interfacial Activity Comparable to Janus Particles for Oily Water Purification. Stretchable and Self-Adhesive Conductors for Smart Epidermal Electronics. Swelling-Shrinking Behavior of a Hydrogel with a CO2-Switchable Volume Phase Transition Temperature. The Trade-Off between Dechlorination and Polymerization for Facile Fabrication of Electronic Grade Epoxidized Cardol.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1