探索用于 4D-STEM-DPC 数据处理的深度学习模型。

IF 2.1 3区 工程技术 Q2 MICROSCOPY Ultramicroscopy Pub Date : 2024-10-05 DOI:10.1016/j.ultramic.2024.114058
Gregory Nordahl, Sivert Dagenborg, Jørgen Sørhaug, Magnus Nord
{"title":"探索用于 4D-STEM-DPC 数据处理的深度学习模型。","authors":"Gregory Nordahl,&nbsp;Sivert Dagenborg,&nbsp;Jørgen Sørhaug,&nbsp;Magnus Nord","doi":"10.1016/j.ultramic.2024.114058","DOIUrl":null,"url":null,"abstract":"<div><div>For the study of magnetic materials at the nanoscale, differential phase contrast (DPC) imaging is a potent tool. With the advancements in direct detector technology, and consequent popularity gain for four-dimensional scanning transmission electron microscopy (4D-STEM), there has been an ongoing development of new and enhanced ways for STEM-DPC big data processing. Conventional algorithms are experimentally tailored, and so in this article we explore how supervised learning with convolutional neural networks (CNN) can be utilized for automated and consistent processing of STEM-DPC data. Two different approaches are investigated, one with direct tracking of the beam with regression analysis, and one where a modified U-net is used for direct beam segmentation as a pre-processing step. The CNNs are trained on experimentally obtained 4D-STEM data, enabling them to effectively handle data collected under similar instrument acquisition parameters. The model outputs are compared to conventional algorithms, particularly in how they process data in the presence of strong diffraction contrast, and how they affect domain wall profiles and width measurement.</div></div>","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":"267 ","pages":"Article 114058"},"PeriodicalIF":2.1000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring deep learning models for 4D-STEM-DPC data processing\",\"authors\":\"Gregory Nordahl,&nbsp;Sivert Dagenborg,&nbsp;Jørgen Sørhaug,&nbsp;Magnus Nord\",\"doi\":\"10.1016/j.ultramic.2024.114058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For the study of magnetic materials at the nanoscale, differential phase contrast (DPC) imaging is a potent tool. With the advancements in direct detector technology, and consequent popularity gain for four-dimensional scanning transmission electron microscopy (4D-STEM), there has been an ongoing development of new and enhanced ways for STEM-DPC big data processing. Conventional algorithms are experimentally tailored, and so in this article we explore how supervised learning with convolutional neural networks (CNN) can be utilized for automated and consistent processing of STEM-DPC data. Two different approaches are investigated, one with direct tracking of the beam with regression analysis, and one where a modified U-net is used for direct beam segmentation as a pre-processing step. The CNNs are trained on experimentally obtained 4D-STEM data, enabling them to effectively handle data collected under similar instrument acquisition parameters. The model outputs are compared to conventional algorithms, particularly in how they process data in the presence of strong diffraction contrast, and how they affect domain wall profiles and width measurement.</div></div>\",\"PeriodicalId\":23439,\"journal\":{\"name\":\"Ultramicroscopy\",\"volume\":\"267 \",\"pages\":\"Article 114058\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ultramicroscopy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304399124001372\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultramicroscopy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304399124001372","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROSCOPY","Score":null,"Total":0}
引用次数: 0

摘要

在纳米尺度的磁性材料研究中,差分相衬(DPC)成像是一种有效的工具。随着直接探测器技术的进步和四维扫描透射电子显微镜(4D-STEM)的普及,STEM-DPC 大数据处理的新方法和增强方法也在不断发展。传统算法都是根据实验量身定制的,因此在本文中,我们将探讨如何利用卷积神经网络(CNN)进行监督学习,以实现 STEM-DPC 数据的自动化和一致性处理。我们研究了两种不同的方法,一种是通过回归分析直接跟踪光束,另一种是在预处理步骤中使用改进的 U 网直接分割光束。CNN 在实验获得的 4D-STEM 数据上进行了训练,使其能够有效处理在类似仪器采集参数下收集的数据。模型输出结果与传统算法进行了比较,特别是在出现强烈衍射对比的情况下如何处理数据,以及如何影响畴壁轮廓和宽度测量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploring deep learning models for 4D-STEM-DPC data processing
For the study of magnetic materials at the nanoscale, differential phase contrast (DPC) imaging is a potent tool. With the advancements in direct detector technology, and consequent popularity gain for four-dimensional scanning transmission electron microscopy (4D-STEM), there has been an ongoing development of new and enhanced ways for STEM-DPC big data processing. Conventional algorithms are experimentally tailored, and so in this article we explore how supervised learning with convolutional neural networks (CNN) can be utilized for automated and consistent processing of STEM-DPC data. Two different approaches are investigated, one with direct tracking of the beam with regression analysis, and one where a modified U-net is used for direct beam segmentation as a pre-processing step. The CNNs are trained on experimentally obtained 4D-STEM data, enabling them to effectively handle data collected under similar instrument acquisition parameters. The model outputs are compared to conventional algorithms, particularly in how they process data in the presence of strong diffraction contrast, and how they affect domain wall profiles and width measurement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ultramicroscopy
Ultramicroscopy 工程技术-显微镜技术
CiteScore
4.60
自引率
13.60%
发文量
117
审稿时长
5.3 months
期刊介绍: Ultramicroscopy is an established journal that provides a forum for the publication of original research papers, invited reviews and rapid communications. The scope of Ultramicroscopy is to describe advances in instrumentation, methods and theory related to all modes of microscopical imaging, diffraction and spectroscopy in the life and physical sciences.
期刊最新文献
Aberration calculation of microlens array using differential algebraic method. Relativistic EELS scattering cross-sections for microanalysis based on Dirac solutions. Improved precision and accuracy of electron energy-loss spectroscopy quantification via fine structure fitting with constrained optimization. Workflow automation of SEM acquisitions and feature tracking. Enhancing subsurface imaging in ultrasonic atomic force microscopy with optimized contact force.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1