James L. Ross, Montserrat Puigdelloses-Vallcorba, Gonzalo Piñero, Nishant Soni, Wes Thomason, John DeSisto, Angelo Angione, Nadejda M. Tsankova, Maria G. Castro, Matthew Schniederjan, Nitin R. Wadhwani, G. Praveen Raju, Peter Morgenstern, Oren J. Becher, Adam L. Green, Alexander M. Tsankov, Dolores Hambardzumyan
{"title":"小胶质细胞和单核细胞衍生巨噬细胞推动小儿高级别胶质瘤的发展,并通过组蛋白突变形成转录","authors":"James L. Ross, Montserrat Puigdelloses-Vallcorba, Gonzalo Piñero, Nishant Soni, Wes Thomason, John DeSisto, Angelo Angione, Nadejda M. Tsankova, Maria G. Castro, Matthew Schniederjan, Nitin R. Wadhwani, G. Praveen Raju, Peter Morgenstern, Oren J. Becher, Adam L. Green, Alexander M. Tsankov, Dolores Hambardzumyan","doi":"10.1016/j.immuni.2024.09.007","DOIUrl":null,"url":null,"abstract":"Pediatric high-grade gliomas (pHGGs), including hemispheric pHGGs and diffuse midline gliomas (DMGs), harbor mutually exclusive tumor location-specific histone mutations. Using immunocompetent <em>de novo</em> mouse models of pHGGs, we demonstrated that myeloid cells were the predominant infiltrating non-neoplastic cell population. Single-cell RNA sequencing (scRNA-seq), flow cytometry, and immunohistochemistry illustrated the presence of heterogeneous myeloid cell populations shaped by histone mutations and tumor location. Disease-associated myeloid (DAM) cell phenotypes demonstrating immune permissive characteristics were identified in murine and human pHGG samples. H3.3K27M DMGs, the most aggressive DMG, demonstrated enrichment of DAMs. Genetic ablation of chemokines <em>Ccl8</em> and <em>Ccl12</em> resulted in a reduction of DAMs and an increase in lymphocyte infiltration, leading to increased survival of tumor-bearing mice. Pharmacologic inhibition of chemokine receptors CCR1 and CCR5 resulted in extended survival and decreased myeloid cell infiltration. This work establishes the tumor-promoting role of myeloid cells in DMG and the potential therapeutic opportunities for targeting them.","PeriodicalId":13269,"journal":{"name":"Immunity","volume":"20 1","pages":""},"PeriodicalIF":25.5000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microglia and monocyte-derived macrophages drive progression of pediatric high-grade gliomas and are transcriptionally shaped by histone mutations\",\"authors\":\"James L. Ross, Montserrat Puigdelloses-Vallcorba, Gonzalo Piñero, Nishant Soni, Wes Thomason, John DeSisto, Angelo Angione, Nadejda M. Tsankova, Maria G. Castro, Matthew Schniederjan, Nitin R. Wadhwani, G. Praveen Raju, Peter Morgenstern, Oren J. Becher, Adam L. Green, Alexander M. Tsankov, Dolores Hambardzumyan\",\"doi\":\"10.1016/j.immuni.2024.09.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pediatric high-grade gliomas (pHGGs), including hemispheric pHGGs and diffuse midline gliomas (DMGs), harbor mutually exclusive tumor location-specific histone mutations. Using immunocompetent <em>de novo</em> mouse models of pHGGs, we demonstrated that myeloid cells were the predominant infiltrating non-neoplastic cell population. Single-cell RNA sequencing (scRNA-seq), flow cytometry, and immunohistochemistry illustrated the presence of heterogeneous myeloid cell populations shaped by histone mutations and tumor location. Disease-associated myeloid (DAM) cell phenotypes demonstrating immune permissive characteristics were identified in murine and human pHGG samples. H3.3K27M DMGs, the most aggressive DMG, demonstrated enrichment of DAMs. Genetic ablation of chemokines <em>Ccl8</em> and <em>Ccl12</em> resulted in a reduction of DAMs and an increase in lymphocyte infiltration, leading to increased survival of tumor-bearing mice. Pharmacologic inhibition of chemokine receptors CCR1 and CCR5 resulted in extended survival and decreased myeloid cell infiltration. This work establishes the tumor-promoting role of myeloid cells in DMG and the potential therapeutic opportunities for targeting them.\",\"PeriodicalId\":13269,\"journal\":{\"name\":\"Immunity\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":25.5000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Immunity\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.immuni.2024.09.007\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.immuni.2024.09.007","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Microglia and monocyte-derived macrophages drive progression of pediatric high-grade gliomas and are transcriptionally shaped by histone mutations
Pediatric high-grade gliomas (pHGGs), including hemispheric pHGGs and diffuse midline gliomas (DMGs), harbor mutually exclusive tumor location-specific histone mutations. Using immunocompetent de novo mouse models of pHGGs, we demonstrated that myeloid cells were the predominant infiltrating non-neoplastic cell population. Single-cell RNA sequencing (scRNA-seq), flow cytometry, and immunohistochemistry illustrated the presence of heterogeneous myeloid cell populations shaped by histone mutations and tumor location. Disease-associated myeloid (DAM) cell phenotypes demonstrating immune permissive characteristics were identified in murine and human pHGG samples. H3.3K27M DMGs, the most aggressive DMG, demonstrated enrichment of DAMs. Genetic ablation of chemokines Ccl8 and Ccl12 resulted in a reduction of DAMs and an increase in lymphocyte infiltration, leading to increased survival of tumor-bearing mice. Pharmacologic inhibition of chemokine receptors CCR1 and CCR5 resulted in extended survival and decreased myeloid cell infiltration. This work establishes the tumor-promoting role of myeloid cells in DMG and the potential therapeutic opportunities for targeting them.
期刊介绍:
Immunity is a publication that focuses on publishing significant advancements in research related to immunology. We encourage the submission of studies that offer groundbreaking immunological discoveries, whether at the molecular, cellular, or whole organism level. Topics of interest encompass a wide range, such as cancer, infectious diseases, neuroimmunology, autoimmune diseases, allergies, mucosal immunity, metabolic diseases, and homeostasis.