Ray Singh Rathore, Manjari Mishra, Ashwani Pareek, Sneh Lata Singla-Pareek
{"title":"通过蛋白质工程富集谷粒赖氨酸并提高水稻的抗逆性。","authors":"Ray Singh Rathore, Manjari Mishra, Ashwani Pareek, Sneh Lata Singla-Pareek","doi":"10.1093/jxb/erae414","DOIUrl":null,"url":null,"abstract":"<p><p>Amino acids are a major source of nourishment for people living in regions where rice is a staple food. However, rice grain is deficient in essential amino acids, such as lysine. The activity of dihydrodipicolinate synthase (DHDPS) enzyme is crucial for lysine production in higher plants, but it is highly regulated through a feedback inhibition by its end product lysine, leading to its limited activity in the grain and resulting in low lysine accumulation. We identified lysine binding sites in the DHDPS enzyme and introduced key mutations to make it lysine feedback insensitive. Using in vivo analysis and functional complementation assays, we confirmed that protein engineering of the DHDPS renders it insensitive to lysine. Expression of mutated DHDPS resulted in 29 % higher lysine and 15 % higher protein accumulation in rice grains than the wild type. Importantly, the lysine content in transgenic grains was maintained in cooked rice. Further, the transgenic plants exhibited enhanced stress tolerance along with better antioxidant levels, improved photosynthesis, and higher grain yield compared to wild type plants. We have shown for the first time in rice that protein engineering of DHDPS can lead to accumulation of lysine in grains and impart abiotic stress tolerance. This approach could improve health in regions with nutrient deficiencies and environmental stressors that challenge food production and human health.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Grain Lysine enrichment and improved stress tolerance in rice through protein engineering.\",\"authors\":\"Ray Singh Rathore, Manjari Mishra, Ashwani Pareek, Sneh Lata Singla-Pareek\",\"doi\":\"10.1093/jxb/erae414\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Amino acids are a major source of nourishment for people living in regions where rice is a staple food. However, rice grain is deficient in essential amino acids, such as lysine. The activity of dihydrodipicolinate synthase (DHDPS) enzyme is crucial for lysine production in higher plants, but it is highly regulated through a feedback inhibition by its end product lysine, leading to its limited activity in the grain and resulting in low lysine accumulation. We identified lysine binding sites in the DHDPS enzyme and introduced key mutations to make it lysine feedback insensitive. Using in vivo analysis and functional complementation assays, we confirmed that protein engineering of the DHDPS renders it insensitive to lysine. Expression of mutated DHDPS resulted in 29 % higher lysine and 15 % higher protein accumulation in rice grains than the wild type. Importantly, the lysine content in transgenic grains was maintained in cooked rice. Further, the transgenic plants exhibited enhanced stress tolerance along with better antioxidant levels, improved photosynthesis, and higher grain yield compared to wild type plants. We have shown for the first time in rice that protein engineering of DHDPS can lead to accumulation of lysine in grains and impart abiotic stress tolerance. This approach could improve health in regions with nutrient deficiencies and environmental stressors that challenge food production and human health.</p>\",\"PeriodicalId\":15820,\"journal\":{\"name\":\"Journal of Experimental Botany\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental Botany\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/jxb/erae414\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jxb/erae414","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Grain Lysine enrichment and improved stress tolerance in rice through protein engineering.
Amino acids are a major source of nourishment for people living in regions where rice is a staple food. However, rice grain is deficient in essential amino acids, such as lysine. The activity of dihydrodipicolinate synthase (DHDPS) enzyme is crucial for lysine production in higher plants, but it is highly regulated through a feedback inhibition by its end product lysine, leading to its limited activity in the grain and resulting in low lysine accumulation. We identified lysine binding sites in the DHDPS enzyme and introduced key mutations to make it lysine feedback insensitive. Using in vivo analysis and functional complementation assays, we confirmed that protein engineering of the DHDPS renders it insensitive to lysine. Expression of mutated DHDPS resulted in 29 % higher lysine and 15 % higher protein accumulation in rice grains than the wild type. Importantly, the lysine content in transgenic grains was maintained in cooked rice. Further, the transgenic plants exhibited enhanced stress tolerance along with better antioxidant levels, improved photosynthesis, and higher grain yield compared to wild type plants. We have shown for the first time in rice that protein engineering of DHDPS can lead to accumulation of lysine in grains and impart abiotic stress tolerance. This approach could improve health in regions with nutrient deficiencies and environmental stressors that challenge food production and human health.
期刊介绍:
The Journal of Experimental Botany publishes high-quality primary research and review papers in the plant sciences. These papers cover a range of disciplines from molecular and cellular physiology and biochemistry through whole plant physiology to community physiology.
Full-length primary papers should contribute to our understanding of how plants develop and function, and should provide new insights into biological processes. The journal will not publish purely descriptive papers or papers that report a well-known process in a species in which the process has not been identified previously. Articles should be concise and generally limited to 10 printed pages.