{"title":"含水玄武岩熔体在低水富集度下的稳定性:岩石圈-热成层边界广泛熔化的证据","authors":"Marija Putak Juriček, Hans Keppler","doi":"10.1007/s00410-024-02177-2","DOIUrl":null,"url":null,"abstract":"<div><p>The upper mantle low velocity zone is often attributed to partial melting at the lithosphere-asthenosphere boundary. This implies that basaltic melts may be stable along plausible geotherms due to the freezing point depression in the presence of water and other incompatible impurities. However, the freezing point depression (<i>ΔT</i>) as a function of water content in the near-solidus basaltic melt (<i>c</i><sub><i>H2O</i></sub>) cannot be precisely determined from peridotite melting experiments because of difficulties in recovering homogeneous basaltic glasses at high pressures. We therefore used an alternative approach to reinvestigate and accurately constrain the <i>ΔT–c</i><sub><i>H2O</i></sub> relationship for basaltic melts at the low water fugacities that are expected in the upper mantle. Internally heated pressure vessel (IHPV) experiments were performed at water-saturated conditions in the anorthite-diopside-H<sub>2</sub>O system at confining pressures of 0.02 to 0.2 GPa and temperatures between 940 and 1450 ℃. We determined the water-saturated solidus, and obtained <i>ΔT</i> by combining our data with reports of dry melting temperatures in the anorthite-diopside system. In another series of experiments, we measured water solubility in haplobasaltic melts and extrapolated <i>c</i><sub><i>H2O</i></sub> to pressures and temperatures of the water-saturated solidus. By combining the results from these two series of experiments, we showed that the effect of water on <i>ΔT</i> was previously underestimated by at least 50 ℃. The new <i>ΔT–c</i><sub><i>H2O</i></sub> relationship was then used to revise predictions of melt distribution in the upper mantle. Hydrous melt is almost certainly stable beneath extensive regions of the oceanic lithosphere, and may be present in younger and water-enriched zones of the subcontinental mantle.</p></div>","PeriodicalId":526,"journal":{"name":"Contributions to Mineralogy and Petrology","volume":"179 11","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00410-024-02177-2.pdf","citationCount":"0","resultStr":"{\"title\":\"Stability of hydrous basaltic melts at low water fugacity: evidence for widespread melting at the lithosphere-asthenosphere boundary\",\"authors\":\"Marija Putak Juriček, Hans Keppler\",\"doi\":\"10.1007/s00410-024-02177-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The upper mantle low velocity zone is often attributed to partial melting at the lithosphere-asthenosphere boundary. This implies that basaltic melts may be stable along plausible geotherms due to the freezing point depression in the presence of water and other incompatible impurities. However, the freezing point depression (<i>ΔT</i>) as a function of water content in the near-solidus basaltic melt (<i>c</i><sub><i>H2O</i></sub>) cannot be precisely determined from peridotite melting experiments because of difficulties in recovering homogeneous basaltic glasses at high pressures. We therefore used an alternative approach to reinvestigate and accurately constrain the <i>ΔT–c</i><sub><i>H2O</i></sub> relationship for basaltic melts at the low water fugacities that are expected in the upper mantle. Internally heated pressure vessel (IHPV) experiments were performed at water-saturated conditions in the anorthite-diopside-H<sub>2</sub>O system at confining pressures of 0.02 to 0.2 GPa and temperatures between 940 and 1450 ℃. We determined the water-saturated solidus, and obtained <i>ΔT</i> by combining our data with reports of dry melting temperatures in the anorthite-diopside system. In another series of experiments, we measured water solubility in haplobasaltic melts and extrapolated <i>c</i><sub><i>H2O</i></sub> to pressures and temperatures of the water-saturated solidus. By combining the results from these two series of experiments, we showed that the effect of water on <i>ΔT</i> was previously underestimated by at least 50 ℃. The new <i>ΔT–c</i><sub><i>H2O</i></sub> relationship was then used to revise predictions of melt distribution in the upper mantle. Hydrous melt is almost certainly stable beneath extensive regions of the oceanic lithosphere, and may be present in younger and water-enriched zones of the subcontinental mantle.</p></div>\",\"PeriodicalId\":526,\"journal\":{\"name\":\"Contributions to Mineralogy and Petrology\",\"volume\":\"179 11\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00410-024-02177-2.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Contributions to Mineralogy and Petrology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00410-024-02177-2\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contributions to Mineralogy and Petrology","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s00410-024-02177-2","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Stability of hydrous basaltic melts at low water fugacity: evidence for widespread melting at the lithosphere-asthenosphere boundary
The upper mantle low velocity zone is often attributed to partial melting at the lithosphere-asthenosphere boundary. This implies that basaltic melts may be stable along plausible geotherms due to the freezing point depression in the presence of water and other incompatible impurities. However, the freezing point depression (ΔT) as a function of water content in the near-solidus basaltic melt (cH2O) cannot be precisely determined from peridotite melting experiments because of difficulties in recovering homogeneous basaltic glasses at high pressures. We therefore used an alternative approach to reinvestigate and accurately constrain the ΔT–cH2O relationship for basaltic melts at the low water fugacities that are expected in the upper mantle. Internally heated pressure vessel (IHPV) experiments were performed at water-saturated conditions in the anorthite-diopside-H2O system at confining pressures of 0.02 to 0.2 GPa and temperatures between 940 and 1450 ℃. We determined the water-saturated solidus, and obtained ΔT by combining our data with reports of dry melting temperatures in the anorthite-diopside system. In another series of experiments, we measured water solubility in haplobasaltic melts and extrapolated cH2O to pressures and temperatures of the water-saturated solidus. By combining the results from these two series of experiments, we showed that the effect of water on ΔT was previously underestimated by at least 50 ℃. The new ΔT–cH2O relationship was then used to revise predictions of melt distribution in the upper mantle. Hydrous melt is almost certainly stable beneath extensive regions of the oceanic lithosphere, and may be present in younger and water-enriched zones of the subcontinental mantle.
期刊介绍:
Contributions to Mineralogy and Petrology is an international journal that accepts high quality research papers in the fields of igneous and metamorphic petrology, geochemistry and mineralogy.
Topics of interest include: major element, trace element and isotope geochemistry, geochronology, experimental petrology, igneous and metamorphic petrology, mineralogy, major and trace element mineral chemistry and thermodynamic modeling of petrologic and geochemical processes.