用于任务分析的高斯-马尔科夫随机序列的特征描述

IF 2.7 1区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Astrodynamics Pub Date : 2024-02-08 DOI:10.1007/s42064-023-0183-3
Carmine Giordano
{"title":"用于任务分析的高斯-马尔科夫随机序列的特征描述","authors":"Carmine Giordano","doi":"10.1007/s42064-023-0183-3","DOIUrl":null,"url":null,"abstract":"<div><p>In real scenarios, the spacecraft deviates from the intended paths owing to uncertainties in dynamics, navigation, and command actuation. Accurately quantifying these uncertainties is crucial for assessing the observability, collision risks, and mission viability. This issue is further magnified for CubeSats because they have limited control authority and thus require accurate dispersion estimates to avoid rejecting viable trajectories or selecting unviable ones. Trajectory uncertainties arise from random variables (e.g., measurement errors and drag coefficients) and processes (e.g., solar radiation pressure and low-thrust acceleration). Although random variables generally present minimal computational complexity, handling stochastic processes can be challenging because of their noisy dynamics. Nonetheless, accurately modeling these processes is essential, as they significantly influence the uncertain propagation of space trajectories, and an inadequate representation can result in either underestimation or overestimation of the stochastic characteristics associated with a given trajectory. This study addresses the gap in characterizing process uncertainties, represented as Gauss–Markov processes in mission analysis, by presenting models, evaluating derived quantities, and providing results on the impact of spacecraft trajectories. This study emphasizes the importance of accurately modeling random processes to properly characterize stochastic spacecraft paths.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":52291,"journal":{"name":"Astrodynamics","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42064-023-0183-3.pdf","citationCount":"0","resultStr":"{\"title\":\"Characterization of Gauss–Markov stochastic sequences for mission analysis\",\"authors\":\"Carmine Giordano\",\"doi\":\"10.1007/s42064-023-0183-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In real scenarios, the spacecraft deviates from the intended paths owing to uncertainties in dynamics, navigation, and command actuation. Accurately quantifying these uncertainties is crucial for assessing the observability, collision risks, and mission viability. This issue is further magnified for CubeSats because they have limited control authority and thus require accurate dispersion estimates to avoid rejecting viable trajectories or selecting unviable ones. Trajectory uncertainties arise from random variables (e.g., measurement errors and drag coefficients) and processes (e.g., solar radiation pressure and low-thrust acceleration). Although random variables generally present minimal computational complexity, handling stochastic processes can be challenging because of their noisy dynamics. Nonetheless, accurately modeling these processes is essential, as they significantly influence the uncertain propagation of space trajectories, and an inadequate representation can result in either underestimation or overestimation of the stochastic characteristics associated with a given trajectory. This study addresses the gap in characterizing process uncertainties, represented as Gauss–Markov processes in mission analysis, by presenting models, evaluating derived quantities, and providing results on the impact of spacecraft trajectories. This study emphasizes the importance of accurately modeling random processes to properly characterize stochastic spacecraft paths.\\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":52291,\"journal\":{\"name\":\"Astrodynamics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s42064-023-0183-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astrodynamics\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42064-023-0183-3\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrodynamics","FirstCategoryId":"1087","ListUrlMain":"https://link.springer.com/article/10.1007/s42064-023-0183-3","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

在真实场景中,由于动力学、导航和指令执行方面的不确定性,航天器会偏离预定路径。准确量化这些不确定性对于评估可观测性、碰撞风险和任务可行性至关重要。由于立方体卫星的控制权限有限,因此需要精确的离散性估计,以避免拒绝可行的轨迹或选择不可行的轨迹,因此这一问题在立方体卫星上被进一步放大。轨迹的不确定性来自随机变量(如测量误差和阻力系数)和过程(如太阳辐射压力和低推力加速度)。虽然随机变量通常带来的计算复杂度最小,但由于其动态变化嘈杂,处理随机过程可能极具挑战性。然而,对这些过程进行精确建模是至关重要的,因为它们会对空间轨迹的不确定性传播产生重大影响,而不适当的表征会导致低估或高估与给定轨迹相关的随机特征。本研究通过提出模型、评估导出量和提供航天器轨迹影响的结果,填补了在飞行任务分析中以高斯-马尔科夫过程表示的过程不确定性特征方面的空白。本研究强调了准确模拟随机过程对正确描述随机航天器轨迹的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Characterization of Gauss–Markov stochastic sequences for mission analysis

In real scenarios, the spacecraft deviates from the intended paths owing to uncertainties in dynamics, navigation, and command actuation. Accurately quantifying these uncertainties is crucial for assessing the observability, collision risks, and mission viability. This issue is further magnified for CubeSats because they have limited control authority and thus require accurate dispersion estimates to avoid rejecting viable trajectories or selecting unviable ones. Trajectory uncertainties arise from random variables (e.g., measurement errors and drag coefficients) and processes (e.g., solar radiation pressure and low-thrust acceleration). Although random variables generally present minimal computational complexity, handling stochastic processes can be challenging because of their noisy dynamics. Nonetheless, accurately modeling these processes is essential, as they significantly influence the uncertain propagation of space trajectories, and an inadequate representation can result in either underestimation or overestimation of the stochastic characteristics associated with a given trajectory. This study addresses the gap in characterizing process uncertainties, represented as Gauss–Markov processes in mission analysis, by presenting models, evaluating derived quantities, and providing results on the impact of spacecraft trajectories. This study emphasizes the importance of accurately modeling random processes to properly characterize stochastic spacecraft paths.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Astrodynamics
Astrodynamics Engineering-Aerospace Engineering
CiteScore
6.90
自引率
34.40%
发文量
32
期刊介绍: Astrodynamics is a peer-reviewed international journal that is co-published by Tsinghua University Press and Springer. The high-quality peer-reviewed articles of original research, comprehensive review, mission accomplishments, and technical comments in all fields of astrodynamics will be given priorities for publication. In addition, related research in astronomy and astrophysics that takes advantages of the analytical and computational methods of astrodynamics is also welcome. Astrodynamics would like to invite all of the astrodynamics specialists to submit their research articles to this new journal. Currently, the scope of the journal includes, but is not limited to:Fundamental orbital dynamicsSpacecraft trajectory optimization and space mission designOrbit determination and prediction, autonomous orbital navigationSpacecraft attitude determination, control, and dynamicsGuidance and control of spacecraft and space robotsSpacecraft constellation design and formation flyingModelling, analysis, and optimization of innovative space systemsNovel concepts for space engineering and interdisciplinary applicationsThe effort of the Editorial Board will be ensuring the journal to publish novel researches that advance the field, and will provide authors with a productive, fair, and timely review experience. It is our sincere hope that all researchers in the field of astrodynamics will eagerly access this journal, Astrodynamics, as either authors or readers, making it an illustrious journal that will shape our future space explorations and discoveries.
期刊最新文献
Reinforced Lyapunov controllers for low-thrust lunar transfers Aerogel-based collection of ejecta material from asteroids from libration point orbits: Dynamics and capture design Minimum-time rendezvous for Sun-facing diffractive solar sails with diverse deflection angles Designing a concurrent detumbling and redirection mission for asteroid mining purposes via optimization Luring cooperative capture guidance strategy for the pursuit—evasion game under incomplete target information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1