{"title":"探索具有分支和可变收缩的微通道中的流体流动","authors":"Rakesh Kumar, Amritendu Bhuson Ghosh, Bidisha Borah, Rajaram Lakkaraju, Arnab Atta","doi":"10.1007/s10404-024-02765-5","DOIUrl":null,"url":null,"abstract":"<div><p>We employ a three-dimensional numerical model to analyze the dynamics of single-phase flow in a parallel branched microchannel with varying geometric dimensions of constrictions. The primary objective is to delve into the intricacies of flow within microdevices featuring a branched network and constrictions. The findings illustrate nonlinear variations in velocity, pressure, acceleration, and shear stress along the streamwise direction, underscoring their significant dependence on the converging/diverging angles of the constrictions. To gain deeper insights into the effects of geometric parameters resulting from converging/diverging constrictions in microchannels, a geometric Reynolds number is introduced as the governing parameter for flow transition, further highlighting the novel approach. Our results demonstrate a notable improvement in the magnitude of inertial forces, a feature uncommon in simple microchannels. From the results, it is asserted that microdevices with higher converging–diverging angles combined with lower width ratios are a preferable choice compared to those with lower converging–diverging angles and higher width ratios. Such configurations exhibit lower pumping power, contributing to enhanced energy efficiency. These findings provide fundamental insights that can guide the design of necessary modifications aimed at improving the performance of micropumps or microvalves.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10404-024-02765-5.pdf","citationCount":"0","resultStr":"{\"title\":\"Exploring fluid flow in microchannels with branching and variable constrictions\",\"authors\":\"Rakesh Kumar, Amritendu Bhuson Ghosh, Bidisha Borah, Rajaram Lakkaraju, Arnab Atta\",\"doi\":\"10.1007/s10404-024-02765-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We employ a three-dimensional numerical model to analyze the dynamics of single-phase flow in a parallel branched microchannel with varying geometric dimensions of constrictions. The primary objective is to delve into the intricacies of flow within microdevices featuring a branched network and constrictions. The findings illustrate nonlinear variations in velocity, pressure, acceleration, and shear stress along the streamwise direction, underscoring their significant dependence on the converging/diverging angles of the constrictions. To gain deeper insights into the effects of geometric parameters resulting from converging/diverging constrictions in microchannels, a geometric Reynolds number is introduced as the governing parameter for flow transition, further highlighting the novel approach. Our results demonstrate a notable improvement in the magnitude of inertial forces, a feature uncommon in simple microchannels. From the results, it is asserted that microdevices with higher converging–diverging angles combined with lower width ratios are a preferable choice compared to those with lower converging–diverging angles and higher width ratios. Such configurations exhibit lower pumping power, contributing to enhanced energy efficiency. These findings provide fundamental insights that can guide the design of necessary modifications aimed at improving the performance of micropumps or microvalves.</p></div>\",\"PeriodicalId\":706,\"journal\":{\"name\":\"Microfluidics and Nanofluidics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10404-024-02765-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microfluidics and Nanofluidics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10404-024-02765-5\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microfluidics and Nanofluidics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10404-024-02765-5","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
Exploring fluid flow in microchannels with branching and variable constrictions
We employ a three-dimensional numerical model to analyze the dynamics of single-phase flow in a parallel branched microchannel with varying geometric dimensions of constrictions. The primary objective is to delve into the intricacies of flow within microdevices featuring a branched network and constrictions. The findings illustrate nonlinear variations in velocity, pressure, acceleration, and shear stress along the streamwise direction, underscoring their significant dependence on the converging/diverging angles of the constrictions. To gain deeper insights into the effects of geometric parameters resulting from converging/diverging constrictions in microchannels, a geometric Reynolds number is introduced as the governing parameter for flow transition, further highlighting the novel approach. Our results demonstrate a notable improvement in the magnitude of inertial forces, a feature uncommon in simple microchannels. From the results, it is asserted that microdevices with higher converging–diverging angles combined with lower width ratios are a preferable choice compared to those with lower converging–diverging angles and higher width ratios. Such configurations exhibit lower pumping power, contributing to enhanced energy efficiency. These findings provide fundamental insights that can guide the design of necessary modifications aimed at improving the performance of micropumps or microvalves.
期刊介绍:
Microfluidics and Nanofluidics is an international peer-reviewed journal that aims to publish papers in all aspects of microfluidics, nanofluidics and lab-on-a-chip science and technology. The objectives of the journal are to (1) provide an overview of the current state of the research and development in microfluidics, nanofluidics and lab-on-a-chip devices, (2) improve the fundamental understanding of microfluidic and nanofluidic phenomena, and (3) discuss applications of microfluidics, nanofluidics and lab-on-a-chip devices. Topics covered in this journal include:
1.000 Fundamental principles of micro- and nanoscale phenomena like,
flow, mass transport and reactions
3.000 Theoretical models and numerical simulation with experimental and/or analytical proof
4.000 Novel measurement & characterization technologies
5.000 Devices (actuators and sensors)
6.000 New unit-operations for dedicated microfluidic platforms
7.000 Lab-on-a-Chip applications
8.000 Microfabrication technologies and materials
Please note, Microfluidics and Nanofluidics does not publish manuscripts studying pure microscale heat transfer since there are many journals that cover this field of research (Journal of Heat Transfer, Journal of Heat and Mass Transfer, Journal of Heat and Fluid Flow, etc.).