{"title":"利用 Landsat-9 卫星数据分析德里城市气候的 LST、NDVI 和 UHI 模式","authors":"","doi":"10.1016/j.jastp.2024.106359","DOIUrl":null,"url":null,"abstract":"<div><div>The present study is based on remote sensing techniques focusing on Land Surface Temperature (LST) and Normalized Difference Vegetation Index (NDVI) to investigate their influence on land use and land cover dynamics, and the assessment of the Urban Heat Island (UHI) effect in Delhi, India. The objective of this study is to calculate LST, NDVI, and UHI values to understand the changes in LULC patterns, urbanization, and temperature increase within the city. Unlike previous studies conducted with Landsat-8, the present study employs Landsat-9 data, ensuring a higher level of authenticity in the results. Landsat-9, equipped with state-of-the-art sensors and instrumentation, provides superior data quality, enhanced image resolution, and advanced capabilities for precise monitoring and analysis. The methodology encompasses six steps for LST retrieval, enabling the calculation of UHI values and intensity. Ground data from 32 meteorological stations validate the LST results. Pearson correlation coefficients between LST and NDVI exhibit correlations ranging from −0.58 to −0.68 for three dates. On Dec 8, 2023, there is a weak negative correlation of −0.004. The analysis of changing land cover with variation in NDVI and LST unveils a diverse landscape, primarily characterised by green cover (47.34%), followed by built-up area (44.57%), barren land (7.57%), and water (0.52%). The study identifies the minimum value of UHI intensity for Delhi to be 8.13 °C on 26-Feb 2023 and the maximum value of UHI was estimated 10.29 °C on 2-June 2023. The study of Urban Heat Island (UHI) patterns revealed distinctive seasonal trends. The urban areas exhibited relatively cooler temperatures compared to surrounding rural regions on Dec 8, 2023. The conclusion drawn from this comprehensive analysis is that rapid urbanization in Delhi has significantly contributed to the increase in LST and UHI values. This rise can largely be attributed to the extensive use of concrete in construction activities, which exacerbates the UHI effect. Moreover, this analysis signifies the dynamic nature of UHI and emphasizes the urgency for strategic urban planning and climate-sensitive design approaches. Implementing such measures can create more sustainable and resilient urban environments.</div></div>","PeriodicalId":15096,"journal":{"name":"Journal of Atmospheric and Solar-Terrestrial Physics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of LST, NDVI, and UHI patterns for urban climate using Landsat-9 satellite data in Delhi\",\"authors\":\"\",\"doi\":\"10.1016/j.jastp.2024.106359\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The present study is based on remote sensing techniques focusing on Land Surface Temperature (LST) and Normalized Difference Vegetation Index (NDVI) to investigate their influence on land use and land cover dynamics, and the assessment of the Urban Heat Island (UHI) effect in Delhi, India. The objective of this study is to calculate LST, NDVI, and UHI values to understand the changes in LULC patterns, urbanization, and temperature increase within the city. Unlike previous studies conducted with Landsat-8, the present study employs Landsat-9 data, ensuring a higher level of authenticity in the results. Landsat-9, equipped with state-of-the-art sensors and instrumentation, provides superior data quality, enhanced image resolution, and advanced capabilities for precise monitoring and analysis. The methodology encompasses six steps for LST retrieval, enabling the calculation of UHI values and intensity. Ground data from 32 meteorological stations validate the LST results. Pearson correlation coefficients between LST and NDVI exhibit correlations ranging from −0.58 to −0.68 for three dates. On Dec 8, 2023, there is a weak negative correlation of −0.004. The analysis of changing land cover with variation in NDVI and LST unveils a diverse landscape, primarily characterised by green cover (47.34%), followed by built-up area (44.57%), barren land (7.57%), and water (0.52%). The study identifies the minimum value of UHI intensity for Delhi to be 8.13 °C on 26-Feb 2023 and the maximum value of UHI was estimated 10.29 °C on 2-June 2023. The study of Urban Heat Island (UHI) patterns revealed distinctive seasonal trends. The urban areas exhibited relatively cooler temperatures compared to surrounding rural regions on Dec 8, 2023. The conclusion drawn from this comprehensive analysis is that rapid urbanization in Delhi has significantly contributed to the increase in LST and UHI values. This rise can largely be attributed to the extensive use of concrete in construction activities, which exacerbates the UHI effect. Moreover, this analysis signifies the dynamic nature of UHI and emphasizes the urgency for strategic urban planning and climate-sensitive design approaches. Implementing such measures can create more sustainable and resilient urban environments.</div></div>\",\"PeriodicalId\":15096,\"journal\":{\"name\":\"Journal of Atmospheric and Solar-Terrestrial Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Atmospheric and Solar-Terrestrial Physics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1364682624001871\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atmospheric and Solar-Terrestrial Physics","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364682624001871","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Analysis of LST, NDVI, and UHI patterns for urban climate using Landsat-9 satellite data in Delhi
The present study is based on remote sensing techniques focusing on Land Surface Temperature (LST) and Normalized Difference Vegetation Index (NDVI) to investigate their influence on land use and land cover dynamics, and the assessment of the Urban Heat Island (UHI) effect in Delhi, India. The objective of this study is to calculate LST, NDVI, and UHI values to understand the changes in LULC patterns, urbanization, and temperature increase within the city. Unlike previous studies conducted with Landsat-8, the present study employs Landsat-9 data, ensuring a higher level of authenticity in the results. Landsat-9, equipped with state-of-the-art sensors and instrumentation, provides superior data quality, enhanced image resolution, and advanced capabilities for precise monitoring and analysis. The methodology encompasses six steps for LST retrieval, enabling the calculation of UHI values and intensity. Ground data from 32 meteorological stations validate the LST results. Pearson correlation coefficients between LST and NDVI exhibit correlations ranging from −0.58 to −0.68 for three dates. On Dec 8, 2023, there is a weak negative correlation of −0.004. The analysis of changing land cover with variation in NDVI and LST unveils a diverse landscape, primarily characterised by green cover (47.34%), followed by built-up area (44.57%), barren land (7.57%), and water (0.52%). The study identifies the minimum value of UHI intensity for Delhi to be 8.13 °C on 26-Feb 2023 and the maximum value of UHI was estimated 10.29 °C on 2-June 2023. The study of Urban Heat Island (UHI) patterns revealed distinctive seasonal trends. The urban areas exhibited relatively cooler temperatures compared to surrounding rural regions on Dec 8, 2023. The conclusion drawn from this comprehensive analysis is that rapid urbanization in Delhi has significantly contributed to the increase in LST and UHI values. This rise can largely be attributed to the extensive use of concrete in construction activities, which exacerbates the UHI effect. Moreover, this analysis signifies the dynamic nature of UHI and emphasizes the urgency for strategic urban planning and climate-sensitive design approaches. Implementing such measures can create more sustainable and resilient urban environments.
期刊介绍:
The Journal of Atmospheric and Solar-Terrestrial Physics (JASTP) is an international journal concerned with the inter-disciplinary science of the Earth''s atmospheric and space environment, especially the highly varied and highly variable physical phenomena that occur in this natural laboratory and the processes that couple them.
The journal covers the physical processes operating in the troposphere, stratosphere, mesosphere, thermosphere, ionosphere, magnetosphere, the Sun, interplanetary medium, and heliosphere. Phenomena occurring in other "spheres", solar influences on climate, and supporting laboratory measurements are also considered. The journal deals especially with the coupling between the different regions.
Solar flares, coronal mass ejections, and other energetic events on the Sun create interesting and important perturbations in the near-Earth space environment. The physics of such "space weather" is central to the Journal of Atmospheric and Solar-Terrestrial Physics and the journal welcomes papers that lead in the direction of a predictive understanding of the coupled system. Regarding the upper atmosphere, the subjects of aeronomy, geomagnetism and geoelectricity, auroral phenomena, radio wave propagation, and plasma instabilities, are examples within the broad field of solar-terrestrial physics which emphasise the energy exchange between the solar wind, the magnetospheric and ionospheric plasmas, and the neutral gas. In the lower atmosphere, topics covered range from mesoscale to global scale dynamics, to atmospheric electricity, lightning and its effects, and to anthropogenic changes.