以人为本的人工智能作为肿瘤学图像诊断工具开发的指导框架:系统综述

K. Allen , A.K. Yawson , S. Haggenmüller , J.N. Kather , T.J. Brinker
{"title":"以人为本的人工智能作为肿瘤学图像诊断工具开发的指导框架:系统综述","authors":"K. Allen ,&nbsp;A.K. Yawson ,&nbsp;S. Haggenmüller ,&nbsp;J.N. Kather ,&nbsp;T.J. Brinker","doi":"10.1016/j.esmorw.2024.100077","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Artificial intelligence diagnostic tools (AIDTs) in oncology show high image classification accuracy but limited clinical adoption. Their adoption could be enhanced by (i) using user feedback during the software design, (ii) demonstrating that AIDTs improve the user’s decisions, and (iii) providing explanations of AI decisions tailored to the user, three aspects central to human-centered AI (HCAI). This review assesses these three aspects in AIDTs for oncology in general, exemplifying its concepts in the established field of skin cancer diagnostics as a specific use case.</div></div><div><h3>Materials and methods</h3><div>We carried out three Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) searches using PubMed and ScienceDirect, limiting the results to articles published from 2019 to 2024. The first search focused on articles that used user feedback to develop AIDTs. The second search addressed whether AIDT improves dermatologists’ decisions. The third search targeted explainable AI in skin cancer.</div></div><div><h3>Results</h3><div>Five studies incorporated user feedback in AIDT design for cancer. Zooming in on AIDT for skin cancer, nine studies (3/37 in 2019, 3/93 in 2023) indicated that AIDTs improve dermatologists’ decisions in experimental (<em>n</em> = 5) and clinical settings (<em>n</em> = 1). Explainable AI was common in skin cancer diagnostics (<em>n</em> = 26), with papers assessing the user’s preference for explainable AI (XAI) methods or the impact of XAI on the user’s trust in AI diagnosis.</div></div><div><h3>Conclusions</h3><div>User feedback has been used to develop AIDTs tailored to clinicians’ needs. Evidence shows that AIDTs can improve clinicians’ decisions. This, combined with XAI, increases clinicians’ trust in AIDTs, potentially favoring their widespread usage.</div></div>","PeriodicalId":100491,"journal":{"name":"ESMO Real World Data and Digital Oncology","volume":"6 ","pages":"Article 100077"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Human-centered AI as a framework guiding the development of image-based diagnostic tools in oncology: a systematic review\",\"authors\":\"K. Allen ,&nbsp;A.K. Yawson ,&nbsp;S. Haggenmüller ,&nbsp;J.N. Kather ,&nbsp;T.J. Brinker\",\"doi\":\"10.1016/j.esmorw.2024.100077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>Artificial intelligence diagnostic tools (AIDTs) in oncology show high image classification accuracy but limited clinical adoption. Their adoption could be enhanced by (i) using user feedback during the software design, (ii) demonstrating that AIDTs improve the user’s decisions, and (iii) providing explanations of AI decisions tailored to the user, three aspects central to human-centered AI (HCAI). This review assesses these three aspects in AIDTs for oncology in general, exemplifying its concepts in the established field of skin cancer diagnostics as a specific use case.</div></div><div><h3>Materials and methods</h3><div>We carried out three Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) searches using PubMed and ScienceDirect, limiting the results to articles published from 2019 to 2024. The first search focused on articles that used user feedback to develop AIDTs. The second search addressed whether AIDT improves dermatologists’ decisions. The third search targeted explainable AI in skin cancer.</div></div><div><h3>Results</h3><div>Five studies incorporated user feedback in AIDT design for cancer. Zooming in on AIDT for skin cancer, nine studies (3/37 in 2019, 3/93 in 2023) indicated that AIDTs improve dermatologists’ decisions in experimental (<em>n</em> = 5) and clinical settings (<em>n</em> = 1). Explainable AI was common in skin cancer diagnostics (<em>n</em> = 26), with papers assessing the user’s preference for explainable AI (XAI) methods or the impact of XAI on the user’s trust in AI diagnosis.</div></div><div><h3>Conclusions</h3><div>User feedback has been used to develop AIDTs tailored to clinicians’ needs. Evidence shows that AIDTs can improve clinicians’ decisions. This, combined with XAI, increases clinicians’ trust in AIDTs, potentially favoring their widespread usage.</div></div>\",\"PeriodicalId\":100491,\"journal\":{\"name\":\"ESMO Real World Data and Digital Oncology\",\"volume\":\"6 \",\"pages\":\"Article 100077\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ESMO Real World Data and Digital Oncology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949820124000559\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESMO Real World Data and Digital Oncology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949820124000559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景肿瘤学领域的人工智能诊断工具(AIDT)显示出很高的图像分类准确性,但临床应用却很有限。可以通过以下方式提高其采用率:(i) 在软件设计过程中使用用户反馈;(ii) 证明人工智能诊断工具能改善用户的决策;(iii) 提供针对用户的人工智能决策解释,这三个方面是以人为本的人工智能(HCAI)的核心。本综述从总体上评估了肿瘤学 AIDTs 的这三个方面,并以皮肤癌诊断这一成熟领域的具体使用案例为例说明了其概念。材料与方法我们使用 PubMed 和 ScienceDirect 进行了三次系统综述和 Meta 分析首选报告项目(PRISMA)检索,检索结果仅限于 2019 年至 2024 年发表的文章。第一项检索侧重于使用用户反馈开发 AIDT 的文章。第二项搜索涉及 AIDT 是否改善了皮肤科医生的决策。第三次搜索针对皮肤癌中的可解释人工智能。结果五项研究将用户反馈纳入了癌症AIDT的设计中。在皮肤癌 AIDT 方面,9 项研究(2019 年 3/37 项,2023 年 3/93 项)表明,AIDT 在实验(5 项)和临床(1 项)环境中改善了皮肤科医生的决策。可解释人工智能在皮肤癌诊断中很常见(n = 26),有论文评估了用户对可解释人工智能(XAI)方法的偏好或 XAI 对用户对人工智能诊断信任度的影响。有证据表明,人工智能诊断可改善临床医生的决策。这一点与 XAI 相结合,增加了临床医生对 AIDTs 的信任,从而有可能促进 AIDTs 的广泛使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Human-centered AI as a framework guiding the development of image-based diagnostic tools in oncology: a systematic review

Background

Artificial intelligence diagnostic tools (AIDTs) in oncology show high image classification accuracy but limited clinical adoption. Their adoption could be enhanced by (i) using user feedback during the software design, (ii) demonstrating that AIDTs improve the user’s decisions, and (iii) providing explanations of AI decisions tailored to the user, three aspects central to human-centered AI (HCAI). This review assesses these three aspects in AIDTs for oncology in general, exemplifying its concepts in the established field of skin cancer diagnostics as a specific use case.

Materials and methods

We carried out three Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) searches using PubMed and ScienceDirect, limiting the results to articles published from 2019 to 2024. The first search focused on articles that used user feedback to develop AIDTs. The second search addressed whether AIDT improves dermatologists’ decisions. The third search targeted explainable AI in skin cancer.

Results

Five studies incorporated user feedback in AIDT design for cancer. Zooming in on AIDT for skin cancer, nine studies (3/37 in 2019, 3/93 in 2023) indicated that AIDTs improve dermatologists’ decisions in experimental (n = 5) and clinical settings (n = 1). Explainable AI was common in skin cancer diagnostics (n = 26), with papers assessing the user’s preference for explainable AI (XAI) methods or the impact of XAI on the user’s trust in AI diagnosis.

Conclusions

User feedback has been used to develop AIDTs tailored to clinicians’ needs. Evidence shows that AIDTs can improve clinicians’ decisions. This, combined with XAI, increases clinicians’ trust in AIDTs, potentially favoring their widespread usage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Utility of automated data transfer for cancer clinical trials and considerations for implementation Characterisation of oncology EHR-derived real-world data in the UK, Germany, and Japan Evolving treatment patterns and outcomes among patients with metastatic urothelial carcinoma post-avelumab maintenance approval: insights from The US Oncology Network Collaborating across sectors in service of open science, precision oncology, and patients: an overview of the AACR Project GENIE (Genomics Evidence Neoplasia Information Exchange) Biopharma Collaborative (BPC) Data analytics for real-world data integration in TKI-treated NSCLC patients using electronic health records
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1