Maria J. Lopera , Mikołaj Rogalski , Piotr Arcab , Marzena Stefaniuk , Yunfeng Nie , Heidi Ottevaere , Carlos Trujillo , Maciej Trusiak
{"title":"用于多平面偏振成像的无透镜穆勒全息显微镜具有强大的降噪功能","authors":"Maria J. Lopera , Mikołaj Rogalski , Piotr Arcab , Marzena Stefaniuk , Yunfeng Nie , Heidi Ottevaere , Carlos Trujillo , Maciej Trusiak","doi":"10.1016/j.optlastec.2024.111936","DOIUrl":null,"url":null,"abstract":"<div><div>Lensless holographic microscopy has emerged as a powerful and cost-effective tool for computational imaging, offering high resolution over a large field of view, beneficial for various biological applications. However, conventional approaches can struggle with contrast and accurate visualization of diverse components over the samples, which can directly affect the diagnostic precision of the techniques. Mueller imaging, while offering detailed, stain-free observations of polarized light responses in samples, often has a limited field of view and single plane information. This is due to the use of high NA microscope objectives and generally complex hardware setups, thus narrowing its practical effectiveness. This work introduces a Lensless Mueller Holographic Microscopy (LMHM) system that overcomes these limitations, enabling large field of view, volumetric multi-layer imaging, and Mueller matrix computation using in-line lens-free holography setup. The proposed system provides precision visualization of polarization information in samples, offering high-quality features due to the incorporation of a numerical multi-height Gerchberg-Saxton reconstruction algorithm with additional complex field filtering and a physical rotating diffuser. The proposed LMHM framework is validated with a calibrated USAF 1951 birefringent test target. A multiplane sample containing cloth fiber is utilized to study the LMHM capabilities of imaging volumetric samples. Finally, the LMHM is used to analyze two mice’s brain slices, effectively showcasing this organ’s anatomy. Among other structures in the brain, the proposed method easily allows the visualization of, e.g., the corpus callosum. These results constitute a proof-of-concept evaluation for bioimaging applications.</div></div>","PeriodicalId":19511,"journal":{"name":"Optics and Laser Technology","volume":"181 ","pages":"Article 111936"},"PeriodicalIF":4.6000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lensless Mueller holographic microscopy with robust noise reduction for multiplane polarization imaging\",\"authors\":\"Maria J. Lopera , Mikołaj Rogalski , Piotr Arcab , Marzena Stefaniuk , Yunfeng Nie , Heidi Ottevaere , Carlos Trujillo , Maciej Trusiak\",\"doi\":\"10.1016/j.optlastec.2024.111936\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Lensless holographic microscopy has emerged as a powerful and cost-effective tool for computational imaging, offering high resolution over a large field of view, beneficial for various biological applications. However, conventional approaches can struggle with contrast and accurate visualization of diverse components over the samples, which can directly affect the diagnostic precision of the techniques. Mueller imaging, while offering detailed, stain-free observations of polarized light responses in samples, often has a limited field of view and single plane information. This is due to the use of high NA microscope objectives and generally complex hardware setups, thus narrowing its practical effectiveness. This work introduces a Lensless Mueller Holographic Microscopy (LMHM) system that overcomes these limitations, enabling large field of view, volumetric multi-layer imaging, and Mueller matrix computation using in-line lens-free holography setup. The proposed system provides precision visualization of polarization information in samples, offering high-quality features due to the incorporation of a numerical multi-height Gerchberg-Saxton reconstruction algorithm with additional complex field filtering and a physical rotating diffuser. The proposed LMHM framework is validated with a calibrated USAF 1951 birefringent test target. A multiplane sample containing cloth fiber is utilized to study the LMHM capabilities of imaging volumetric samples. Finally, the LMHM is used to analyze two mice’s brain slices, effectively showcasing this organ’s anatomy. Among other structures in the brain, the proposed method easily allows the visualization of, e.g., the corpus callosum. These results constitute a proof-of-concept evaluation for bioimaging applications.</div></div>\",\"PeriodicalId\":19511,\"journal\":{\"name\":\"Optics and Laser Technology\",\"volume\":\"181 \",\"pages\":\"Article 111936\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics and Laser Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S003039922401394X\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics and Laser Technology","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S003039922401394X","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
Lensless Mueller holographic microscopy with robust noise reduction for multiplane polarization imaging
Lensless holographic microscopy has emerged as a powerful and cost-effective tool for computational imaging, offering high resolution over a large field of view, beneficial for various biological applications. However, conventional approaches can struggle with contrast and accurate visualization of diverse components over the samples, which can directly affect the diagnostic precision of the techniques. Mueller imaging, while offering detailed, stain-free observations of polarized light responses in samples, often has a limited field of view and single plane information. This is due to the use of high NA microscope objectives and generally complex hardware setups, thus narrowing its practical effectiveness. This work introduces a Lensless Mueller Holographic Microscopy (LMHM) system that overcomes these limitations, enabling large field of view, volumetric multi-layer imaging, and Mueller matrix computation using in-line lens-free holography setup. The proposed system provides precision visualization of polarization information in samples, offering high-quality features due to the incorporation of a numerical multi-height Gerchberg-Saxton reconstruction algorithm with additional complex field filtering and a physical rotating diffuser. The proposed LMHM framework is validated with a calibrated USAF 1951 birefringent test target. A multiplane sample containing cloth fiber is utilized to study the LMHM capabilities of imaging volumetric samples. Finally, the LMHM is used to analyze two mice’s brain slices, effectively showcasing this organ’s anatomy. Among other structures in the brain, the proposed method easily allows the visualization of, e.g., the corpus callosum. These results constitute a proof-of-concept evaluation for bioimaging applications.
期刊介绍:
Optics & Laser Technology aims to provide a vehicle for the publication of a broad range of high quality research and review papers in those fields of scientific and engineering research appertaining to the development and application of the technology of optics and lasers. Papers describing original work in these areas are submitted to rigorous refereeing prior to acceptance for publication.
The scope of Optics & Laser Technology encompasses, but is not restricted to, the following areas:
•development in all types of lasers
•developments in optoelectronic devices and photonics
•developments in new photonics and optical concepts
•developments in conventional optics, optical instruments and components
•techniques of optical metrology, including interferometry and optical fibre sensors
•LIDAR and other non-contact optical measurement techniques, including optical methods in heat and fluid flow
•applications of lasers to materials processing, optical NDT display (including holography) and optical communication
•research and development in the field of laser safety including studies of hazards resulting from the applications of lasers (laser safety, hazards of laser fume)
•developments in optical computing and optical information processing
•developments in new optical materials
•developments in new optical characterization methods and techniques
•developments in quantum optics
•developments in light assisted micro and nanofabrication methods and techniques
•developments in nanophotonics and biophotonics
•developments in imaging processing and systems