Mike Wenzel , Gerrit Renner , Laura Pruin , Carmen Wolf , Christine Kube , Jürgen Schram , Torsten C. Schmidt , Jochen Tuerk
{"title":"利用热分析技术评估样品预处理策略,以减轻微塑料分析中的基质效应","authors":"Mike Wenzel , Gerrit Renner , Laura Pruin , Carmen Wolf , Christine Kube , Jürgen Schram , Torsten C. Schmidt , Jochen Tuerk","doi":"10.1016/j.trac.2024.117997","DOIUrl":null,"url":null,"abstract":"<div><div>The establishment of regulatory thresholds for microplastic concentrations is increasingly recognized as imperative. Therefore, an accurate identification and quantification process is required to ensure the reliability of the measured values when thermonalytical methods were applied. However, the urge for accuracy is hampered by observable matrix effects. Thus, our review aims to assess a spectrum of matrix effect mitigation strategies and finally to propose an analytical workflow that combines the advantages of diverse mitigation approaches. By addressing this topic, our article seeks to contribute to advance the comparability for microplastics analysis and facilitate the establishment of robust regulatory measures. With the analytical workflow proposed in our study, a wide range of matrix effects can be avoided. This can potentially lead to a more accurate analysis. The more accurate analysis allows the determination of realistic environmental concentrations which could lead to more accurate toxicity tests and the establishment of suitable regulatory thresholds.</div></div>","PeriodicalId":439,"journal":{"name":"Trends in Analytical Chemistry","volume":null,"pages":null},"PeriodicalIF":11.8000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of sample pre-treatment strategies to mitigate matrix effects for microplastics analysis using thermoanalytical techniques\",\"authors\":\"Mike Wenzel , Gerrit Renner , Laura Pruin , Carmen Wolf , Christine Kube , Jürgen Schram , Torsten C. Schmidt , Jochen Tuerk\",\"doi\":\"10.1016/j.trac.2024.117997\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The establishment of regulatory thresholds for microplastic concentrations is increasingly recognized as imperative. Therefore, an accurate identification and quantification process is required to ensure the reliability of the measured values when thermonalytical methods were applied. However, the urge for accuracy is hampered by observable matrix effects. Thus, our review aims to assess a spectrum of matrix effect mitigation strategies and finally to propose an analytical workflow that combines the advantages of diverse mitigation approaches. By addressing this topic, our article seeks to contribute to advance the comparability for microplastics analysis and facilitate the establishment of robust regulatory measures. With the analytical workflow proposed in our study, a wide range of matrix effects can be avoided. This can potentially lead to a more accurate analysis. The more accurate analysis allows the determination of realistic environmental concentrations which could lead to more accurate toxicity tests and the establishment of suitable regulatory thresholds.</div></div>\",\"PeriodicalId\":439,\"journal\":{\"name\":\"Trends in Analytical Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.8000,\"publicationDate\":\"2024-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Analytical Chemistry\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165993624004801\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Analytical Chemistry","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165993624004801","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Assessment of sample pre-treatment strategies to mitigate matrix effects for microplastics analysis using thermoanalytical techniques
The establishment of regulatory thresholds for microplastic concentrations is increasingly recognized as imperative. Therefore, an accurate identification and quantification process is required to ensure the reliability of the measured values when thermonalytical methods were applied. However, the urge for accuracy is hampered by observable matrix effects. Thus, our review aims to assess a spectrum of matrix effect mitigation strategies and finally to propose an analytical workflow that combines the advantages of diverse mitigation approaches. By addressing this topic, our article seeks to contribute to advance the comparability for microplastics analysis and facilitate the establishment of robust regulatory measures. With the analytical workflow proposed in our study, a wide range of matrix effects can be avoided. This can potentially lead to a more accurate analysis. The more accurate analysis allows the determination of realistic environmental concentrations which could lead to more accurate toxicity tests and the establishment of suitable regulatory thresholds.
期刊介绍:
TrAC publishes succinct and critical overviews of recent advancements in analytical chemistry, designed to assist analytical chemists and other users of analytical techniques. These reviews offer excellent, up-to-date, and timely coverage of various topics within analytical chemistry. Encompassing areas such as analytical instrumentation, biomedical analysis, biomolecular analysis, biosensors, chemical analysis, chemometrics, clinical chemistry, drug discovery, environmental analysis and monitoring, food analysis, forensic science, laboratory automation, materials science, metabolomics, pesticide-residue analysis, pharmaceutical analysis, proteomics, surface science, and water analysis and monitoring, these critical reviews provide comprehensive insights for practitioners in the field.