基于气凝相验证的具有多重击穿自愈合功能的脂环聚酰亚胺,用于高温电容式储能技术

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Materials Pub Date : 2024-10-14 DOI:10.1002/adma.202410927
Wenjie Huang, Baoquan Wan, Xing Yang, Meng Cheng, Yiyi Zhang, Yuchao Li, Chao Wu, Zhi-Min Dang, Jun-Wei Zha
{"title":"基于气凝相验证的具有多重击穿自愈合功能的脂环聚酰亚胺,用于高温电容式储能技术","authors":"Wenjie Huang, Baoquan Wan, Xing Yang, Meng Cheng, Yiyi Zhang, Yuchao Li, Chao Wu, Zhi-Min Dang, Jun-Wei Zha","doi":"10.1002/adma.202410927","DOIUrl":null,"url":null,"abstract":"Polymer dielectrics with combined thermal stability and self-healing properties are specifically desired for high-temperature film capacitors. The high thermal stability of conventional polymers benefits from the abundance of aromatic rings in the molecule backbone, but the high carbon content sacrifices their self-healing properties. Here, analicyclic polyimide with a high glass transition temperature (256 °C) and wide energy bandgap (4.58 eV) is designed, which exhibits electric conductivity more than an order of magnitude lower than that of classical polyimide at high electric fields and high temperatures. As a result, alicyclic polyimide achieves a discharged energy density of 4.54 J cm<sup>−3</sup> and a charge-discharge efficiency of above 90% at 200 °C, which is superior to existing dielectric polymers and composites. The alicyclic polyimide benefits from a low pyrolytic residual carbon rate, retaining 93% of the dielectric breakdown strength after four electrical breakdown cycles. Distinguishing from the current condensed-phase self-healing concept, for the first time, exploring the self-healing capability of high-temperature polyimide dielectric is presented based on dual self-healing mechanisms of gas-phase and condensed-phase. The high energy density at high temperatures and the superior self-healing capability of alicyclic polyimide further indicate the promise of polyimide dielectric film capacitors for extreme conditions.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":null,"pages":null},"PeriodicalIF":27.4000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Alicyclic Polyimide With Multiple Breakdown Self-Healing Based on Gas-Condensation Phase Validation for High Temperature Capacitive Energy Storage\",\"authors\":\"Wenjie Huang, Baoquan Wan, Xing Yang, Meng Cheng, Yiyi Zhang, Yuchao Li, Chao Wu, Zhi-Min Dang, Jun-Wei Zha\",\"doi\":\"10.1002/adma.202410927\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Polymer dielectrics with combined thermal stability and self-healing properties are specifically desired for high-temperature film capacitors. The high thermal stability of conventional polymers benefits from the abundance of aromatic rings in the molecule backbone, but the high carbon content sacrifices their self-healing properties. Here, analicyclic polyimide with a high glass transition temperature (256 °C) and wide energy bandgap (4.58 eV) is designed, which exhibits electric conductivity more than an order of magnitude lower than that of classical polyimide at high electric fields and high temperatures. As a result, alicyclic polyimide achieves a discharged energy density of 4.54 J cm<sup>−3</sup> and a charge-discharge efficiency of above 90% at 200 °C, which is superior to existing dielectric polymers and composites. The alicyclic polyimide benefits from a low pyrolytic residual carbon rate, retaining 93% of the dielectric breakdown strength after four electrical breakdown cycles. Distinguishing from the current condensed-phase self-healing concept, for the first time, exploring the self-healing capability of high-temperature polyimide dielectric is presented based on dual self-healing mechanisms of gas-phase and condensed-phase. The high energy density at high temperatures and the superior self-healing capability of alicyclic polyimide further indicate the promise of polyimide dielectric film capacitors for extreme conditions.\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":27.4000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adma.202410927\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202410927","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

高温薄膜电容器特别需要兼具热稳定性和自愈特性的聚合物电介质。传统聚合物的高热稳定性得益于分子骨架中丰富的芳香环,但高碳含量却牺牲了它们的自愈性能。在这里,我们设计了具有高玻璃化转变温度(256 °C)和宽能带隙(4.58 eV)的脂环族聚酰亚胺,它在高电场和高温下的导电率比传统聚酰亚胺低一个数量级以上。因此,脂环聚酰亚胺的放电能量密度达到 4.54 J cm-3,在 200 °C 时的充放电效率超过 90%,优于现有的介电聚合物和复合材料。脂环族聚酰亚胺的热解残炭率低,在四个电击穿周期后仍能保持 93% 的介电击穿强度。有别于当前的凝聚相自修复概念,该研究首次提出了基于气相和凝聚相双重自修复机制的高温聚酰亚胺电介质的自修复能力。脂环族聚酰亚胺在高温下的高能量密度和卓越的自愈能力进一步表明了聚酰亚胺电介质薄膜电容器在极端条件下的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Alicyclic Polyimide With Multiple Breakdown Self-Healing Based on Gas-Condensation Phase Validation for High Temperature Capacitive Energy Storage
Polymer dielectrics with combined thermal stability and self-healing properties are specifically desired for high-temperature film capacitors. The high thermal stability of conventional polymers benefits from the abundance of aromatic rings in the molecule backbone, but the high carbon content sacrifices their self-healing properties. Here, analicyclic polyimide with a high glass transition temperature (256 °C) and wide energy bandgap (4.58 eV) is designed, which exhibits electric conductivity more than an order of magnitude lower than that of classical polyimide at high electric fields and high temperatures. As a result, alicyclic polyimide achieves a discharged energy density of 4.54 J cm−3 and a charge-discharge efficiency of above 90% at 200 °C, which is superior to existing dielectric polymers and composites. The alicyclic polyimide benefits from a low pyrolytic residual carbon rate, retaining 93% of the dielectric breakdown strength after four electrical breakdown cycles. Distinguishing from the current condensed-phase self-healing concept, for the first time, exploring the self-healing capability of high-temperature polyimide dielectric is presented based on dual self-healing mechanisms of gas-phase and condensed-phase. The high energy density at high temperatures and the superior self-healing capability of alicyclic polyimide further indicate the promise of polyimide dielectric film capacitors for extreme conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
期刊最新文献
In Situ Electrochemical Evolution of Amorphous Metallic Borides Enabling Long Cycling Room-/Subzero-Temperature Sodium-Sulfur Batteries Triggering Asymmetric Layer Displacement Polarization and Redox Dual-Sites Activation by Inside-Out Anion Substitution for Efficient CO2 Photoreduction Peripheral Substitution Engineering of MR-TADF Emitters Embedded With B‒N Covalent Bond Towards Efficient BT.2020 Blue Electroluminescence Charge Carrier Density in Organic Semiconductors Modulates the Effective Capacitance: A Unified View of Electrolyte Gated Organic Transistors Responsive Magnetic Particle Imaging Tracer: Overcoming “Always-On” Limitation, Eliminating Interference, and Ensuring Safety in Adaptive Therapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1