水下缺陷管道周围地面沉降的实验和理论研究

IF 4.9 2区 工程技术 Q1 ENGINEERING, CIVIL Transportation Geotechnics Pub Date : 2024-10-01 DOI:10.1016/j.trgeo.2024.101395
Bowen Chen , Chengyu Liu , Qi Li , Chikezie Chimere Onyekwena
{"title":"水下缺陷管道周围地面沉降的实验和理论研究","authors":"Bowen Chen ,&nbsp;Chengyu Liu ,&nbsp;Qi Li ,&nbsp;Chikezie Chimere Onyekwena","doi":"10.1016/j.trgeo.2024.101395","DOIUrl":null,"url":null,"abstract":"<div><div>Subsurface settlement is often triggered by soil erosion above underground defective pipelines. However, there is currently insufficient research on calculation methods for estimating ground settlement caused by defective pipeline. In this work, a series of laboratory experiments were conducted to investigate the impacts of the soil particle size, hydraulic gradient, thick-span ratio, and full pipe flow velocity on ground settlement around submerged defective pipelines. A sensitivity analysis was performed to further examine these factors. The experimental results revealed that there are three settlement modes, primarily determined by soil skeleton particle size and the thick-span ratio<em>.</em> The full pipe flow velocity and hydraulic gradient significantly affected the settlement range, with the settlement range increasing as either the flow velocity or hydraulic gradient increased. Additionally, a new calculation model based on Manning’s equation was developed to predict soil settlement. The error between the calculation and experiment results was less than 15%, demonstrating the accuracy and effectiveness of the proposed method.</div></div>","PeriodicalId":56013,"journal":{"name":"Transportation Geotechnics","volume":"49 ","pages":"Article 101395"},"PeriodicalIF":4.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental and theoretical investigations of ground settlement around submerged defective pipelines\",\"authors\":\"Bowen Chen ,&nbsp;Chengyu Liu ,&nbsp;Qi Li ,&nbsp;Chikezie Chimere Onyekwena\",\"doi\":\"10.1016/j.trgeo.2024.101395\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Subsurface settlement is often triggered by soil erosion above underground defective pipelines. However, there is currently insufficient research on calculation methods for estimating ground settlement caused by defective pipeline. In this work, a series of laboratory experiments were conducted to investigate the impacts of the soil particle size, hydraulic gradient, thick-span ratio, and full pipe flow velocity on ground settlement around submerged defective pipelines. A sensitivity analysis was performed to further examine these factors. The experimental results revealed that there are three settlement modes, primarily determined by soil skeleton particle size and the thick-span ratio<em>.</em> The full pipe flow velocity and hydraulic gradient significantly affected the settlement range, with the settlement range increasing as either the flow velocity or hydraulic gradient increased. Additionally, a new calculation model based on Manning’s equation was developed to predict soil settlement. The error between the calculation and experiment results was less than 15%, demonstrating the accuracy and effectiveness of the proposed method.</div></div>\",\"PeriodicalId\":56013,\"journal\":{\"name\":\"Transportation Geotechnics\",\"volume\":\"49 \",\"pages\":\"Article 101395\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportation Geotechnics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214391224002162\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Geotechnics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214391224002162","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

地下沉降通常是由地下缺陷管道上方的土壤侵蚀引发的。然而,目前对估算缺陷管道引起的地面沉降的计算方法研究不足。在这项工作中,我们进行了一系列实验室实验,研究土壤颗粒大小、水力坡度、厚跨比和管道全流速对水下缺陷管道周围地面沉降的影响。为进一步研究这些因素,还进行了敏感性分析。实验结果表明,有三种沉降模式,主要由土壤骨架颗粒大小和厚跨比决定。全管道流速和水力坡度对沉降范围有显著影响,流速或水力坡度越大,沉降范围越大。此外,还根据曼宁方程建立了一个新的计算模型来预测土壤沉降。计算结果与实验结果之间的误差小于 15%,证明了所提方法的准确性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Experimental and theoretical investigations of ground settlement around submerged defective pipelines
Subsurface settlement is often triggered by soil erosion above underground defective pipelines. However, there is currently insufficient research on calculation methods for estimating ground settlement caused by defective pipeline. In this work, a series of laboratory experiments were conducted to investigate the impacts of the soil particle size, hydraulic gradient, thick-span ratio, and full pipe flow velocity on ground settlement around submerged defective pipelines. A sensitivity analysis was performed to further examine these factors. The experimental results revealed that there are three settlement modes, primarily determined by soil skeleton particle size and the thick-span ratio. The full pipe flow velocity and hydraulic gradient significantly affected the settlement range, with the settlement range increasing as either the flow velocity or hydraulic gradient increased. Additionally, a new calculation model based on Manning’s equation was developed to predict soil settlement. The error between the calculation and experiment results was less than 15%, demonstrating the accuracy and effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Transportation Geotechnics
Transportation Geotechnics Social Sciences-Transportation
CiteScore
8.10
自引率
11.30%
发文量
194
审稿时长
51 days
期刊介绍: Transportation Geotechnics is a journal dedicated to publishing high-quality, theoretical, and applied papers that cover all facets of geotechnics for transportation infrastructure such as roads, highways, railways, underground railways, airfields, and waterways. The journal places a special emphasis on case studies that present original work relevant to the sustainable construction of transportation infrastructure. The scope of topics it addresses includes the geotechnical properties of geomaterials for sustainable and rational design and construction, the behavior of compacted and stabilized geomaterials, the use of geosynthetics and reinforcement in constructed layers and interlayers, ground improvement and slope stability for transportation infrastructures, compaction technology and management, maintenance technology, the impact of climate, embankments for highways and high-speed trains, transition zones, dredging, underwater geotechnics for infrastructure purposes, and the modeling of multi-layered structures and supporting ground under dynamic and repeated loads.
期刊最新文献
Exploring liquefaction resistance in saturated and gassy sands at different state parameters Performance of the polyurethane foam injection technique for road maintenance applications Mechanical response of buried water pipes to traffic loading before and after extreme cold waves Effect of torsional shear stress on the deformation characteristics of clay under traffic load Predicting strain energy causing soil liquefaction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1