具有高栅极电容控制能力的新型 4H-SiC MESFET,适用于高频应用

IF 2.7 Q2 PHYSICS, CONDENSED MATTER Micro and Nanostructures Pub Date : 2024-10-12 DOI:10.1016/j.micrna.2024.207994
Zohreh Roustaei, Ali A. Orouji
{"title":"具有高栅极电容控制能力的新型 4H-SiC MESFET,适用于高频应用","authors":"Zohreh Roustaei,&nbsp;Ali A. Orouji","doi":"10.1016/j.micrna.2024.207994","DOIUrl":null,"url":null,"abstract":"<div><div>The ability to control the gate capacitances is crucial for high-frequency applications, as it affects the device's frequency characteristics, gain and power handling capabilities. We present a 4H–SiC metal-semiconductor field-effect transistor (MESFET) with high gate capacitance control ability for high-frequency applications. The proposed structure (GCC-MESFET) consists of a step gate and a SiC well for adjusting the channel depletion layer and modifying the channel charges. Therefore, the gate capacitances will be controlled (GCC-MESFET). The proposed structure significantly improves the cut-off frequency (f<sub>T</sub>) and maximum oscillation frequency (f<sub>max</sub>). The f<sub>T</sub> has increased from 23.5 GHz to 33 GHz and the f<sub>max</sub> from 50.1 GHz to 54.4 GHz in the proposed structure compared to a conventional structure (C-MESFET). The results show that the DC maximum output power density (P<sub>max</sub>), DC <em>trans</em>conductance (g<sub>m</sub>), cut-off frequency (f<sub>T</sub>) and maximum oscillation frequency (f<sub>max</sub>) of GCC-MESFET improve in comparison with a conventional structure (C-MESFET). It is necessary to mention that the drain current and the breakdown voltage of the proposed structure increase by 48 % and 20 % respectively, compared with the C-MESFET structure due to modifying the channel charges and adjusting the electric field. So, the proposed structure can be used for high current, high voltage, high-power and high frequency applications.</div></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"196 ","pages":"Article 207994"},"PeriodicalIF":2.7000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel 4H–SiC MESFET with high ability in gate capacitances control for high frequency applications\",\"authors\":\"Zohreh Roustaei,&nbsp;Ali A. Orouji\",\"doi\":\"10.1016/j.micrna.2024.207994\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The ability to control the gate capacitances is crucial for high-frequency applications, as it affects the device's frequency characteristics, gain and power handling capabilities. We present a 4H–SiC metal-semiconductor field-effect transistor (MESFET) with high gate capacitance control ability for high-frequency applications. The proposed structure (GCC-MESFET) consists of a step gate and a SiC well for adjusting the channel depletion layer and modifying the channel charges. Therefore, the gate capacitances will be controlled (GCC-MESFET). The proposed structure significantly improves the cut-off frequency (f<sub>T</sub>) and maximum oscillation frequency (f<sub>max</sub>). The f<sub>T</sub> has increased from 23.5 GHz to 33 GHz and the f<sub>max</sub> from 50.1 GHz to 54.4 GHz in the proposed structure compared to a conventional structure (C-MESFET). The results show that the DC maximum output power density (P<sub>max</sub>), DC <em>trans</em>conductance (g<sub>m</sub>), cut-off frequency (f<sub>T</sub>) and maximum oscillation frequency (f<sub>max</sub>) of GCC-MESFET improve in comparison with a conventional structure (C-MESFET). It is necessary to mention that the drain current and the breakdown voltage of the proposed structure increase by 48 % and 20 % respectively, compared with the C-MESFET structure due to modifying the channel charges and adjusting the electric field. So, the proposed structure can be used for high current, high voltage, high-power and high frequency applications.</div></div>\",\"PeriodicalId\":100923,\"journal\":{\"name\":\"Micro and Nanostructures\",\"volume\":\"196 \",\"pages\":\"Article 207994\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micro and Nanostructures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2773012324002437\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773012324002437","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

控制栅极电容的能力对高频应用至关重要,因为它会影响器件的频率特性、增益和功率处理能力。我们为高频应用提出了一种具有高栅电容控制能力的 4H-SiC 金属半导体场效应晶体管 (MESFET)。所提出的结构(GCC-MESFET)包括一个阶跃栅极和一个用于调整沟道耗尽层和修改沟道电荷的碳化硅阱。因此,栅极电容将得到控制(GCC-MESFET)。所提出的结构大大提高了截止频率(fT)和最大振荡频率(fmax)。与传统结构(C-MESFET)相比,拟议结构的 fT 从 23.5 GHz 提高到 33 GHz,fmax 从 50.1 GHz 提高到 54.4 GHz。结果表明,与传统结构(C-MESFET)相比,GCC-MESFET 的直流最大输出功率密度(Pmax)、直流跨导(gm)、截止频率(fT)和最大振荡频率(fmax)都有所提高。值得一提的是,由于修改了沟道电荷和调整了电场,与 C-MESFET 结构相比,拟议结构的漏极电流和击穿电压分别增加了 48% 和 20%。因此,所提出的结构可用于大电流、高电压、大功率和高频率应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Novel 4H–SiC MESFET with high ability in gate capacitances control for high frequency applications
The ability to control the gate capacitances is crucial for high-frequency applications, as it affects the device's frequency characteristics, gain and power handling capabilities. We present a 4H–SiC metal-semiconductor field-effect transistor (MESFET) with high gate capacitance control ability for high-frequency applications. The proposed structure (GCC-MESFET) consists of a step gate and a SiC well for adjusting the channel depletion layer and modifying the channel charges. Therefore, the gate capacitances will be controlled (GCC-MESFET). The proposed structure significantly improves the cut-off frequency (fT) and maximum oscillation frequency (fmax). The fT has increased from 23.5 GHz to 33 GHz and the fmax from 50.1 GHz to 54.4 GHz in the proposed structure compared to a conventional structure (C-MESFET). The results show that the DC maximum output power density (Pmax), DC transconductance (gm), cut-off frequency (fT) and maximum oscillation frequency (fmax) of GCC-MESFET improve in comparison with a conventional structure (C-MESFET). It is necessary to mention that the drain current and the breakdown voltage of the proposed structure increase by 48 % and 20 % respectively, compared with the C-MESFET structure due to modifying the channel charges and adjusting the electric field. So, the proposed structure can be used for high current, high voltage, high-power and high frequency applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.50
自引率
0.00%
发文量
0
期刊最新文献
Research on RF performance of GaN HEMT with graded Al composition AlGaN back-barrier Corrigendum to “Evaluation of sensitivity in a vertically misaligned double-gate electrolyte-insulator-semiconductor extended source tunnel FET as pH sensor” [Micro Nanostruct. 196 (2024) 208005] The impact of barrier modulation on carriers transport in GaN quantum well infrared detectors Interference enhanced SPR-mediated visible-light responsive photocatalysis of periodically ordered ZnO nanorod arrays decorated with Au nanoparticles Optimization of efficiency of CsPbI2Br by using different electron transport and hole transport layers: A DFT and SCAPS-1D simulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1