糖尿病的肠道微生物代谢特征及潜在的预防和治疗应用。

IF 12.2 1区 医学 Q1 GASTROENTEROLOGY & HEPATOLOGY Gut Microbes Pub Date : 2024-10-18 DOI:10.1080/19490976.2024.2401654
Enriqueta Garcia-Gutierrez,A Kate O'Mahony,Reinaldo Sousa Dos Santos,Laura Marroquí,Paul D Cotter
{"title":"糖尿病的肠道微生物代谢特征及潜在的预防和治疗应用。","authors":"Enriqueta Garcia-Gutierrez,A Kate O'Mahony,Reinaldo Sousa Dos Santos,Laura Marroquí,Paul D Cotter","doi":"10.1080/19490976.2024.2401654","DOIUrl":null,"url":null,"abstract":"Diabetes mellitus can be subdivided into several categories based on origin and clinical characteristics. The most common forms of diabetes are type 1 (T1D), type 2 diabetes (T2D) and gestational diabetes mellitus (GDM). T1D and T2D are chronic diseases affecting around 537 million adults worldwide and it is projected that these numbers will increase by 12% over the next two decades, while GDM affects up to 30% of women during pregnancy, depending on diagnosis methods. These forms of diabetes have varied origins: T1D is an autoimmune disease, while T2D is commonly associated with, but not limited to, certain lifestyle patterns and GDM can result of a combination of genetic predisposition and pregnancy factors. Despite some pathogenic differences among these forms of diabetes, there are some common markers associated with their development. For instance, gut barrier impairment and inflammation associated with an unbalanced gut microbiota and their metabolites may be common factors in diabetes development and progression. Here, we summarize the microbial signatures that have been linked to diabetes, how they are connected to diet and, ultimately, the impact on metabolite profiles resulting from host-gut microbiota-diet interactions. Additionally, we summarize recent advances relating to promising preventive and therapeutic interventions focusing on the targeted modulation of the gut microbiota to alleviate T1D, T2D and GDM.","PeriodicalId":12909,"journal":{"name":"Gut Microbes","volume":"77 1","pages":"2401654"},"PeriodicalIF":12.2000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gut microbial metabolic signatures in diabetes mellitus and potential preventive and therapeutic applications.\",\"authors\":\"Enriqueta Garcia-Gutierrez,A Kate O'Mahony,Reinaldo Sousa Dos Santos,Laura Marroquí,Paul D Cotter\",\"doi\":\"10.1080/19490976.2024.2401654\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diabetes mellitus can be subdivided into several categories based on origin and clinical characteristics. The most common forms of diabetes are type 1 (T1D), type 2 diabetes (T2D) and gestational diabetes mellitus (GDM). T1D and T2D are chronic diseases affecting around 537 million adults worldwide and it is projected that these numbers will increase by 12% over the next two decades, while GDM affects up to 30% of women during pregnancy, depending on diagnosis methods. These forms of diabetes have varied origins: T1D is an autoimmune disease, while T2D is commonly associated with, but not limited to, certain lifestyle patterns and GDM can result of a combination of genetic predisposition and pregnancy factors. Despite some pathogenic differences among these forms of diabetes, there are some common markers associated with their development. For instance, gut barrier impairment and inflammation associated with an unbalanced gut microbiota and their metabolites may be common factors in diabetes development and progression. Here, we summarize the microbial signatures that have been linked to diabetes, how they are connected to diet and, ultimately, the impact on metabolite profiles resulting from host-gut microbiota-diet interactions. Additionally, we summarize recent advances relating to promising preventive and therapeutic interventions focusing on the targeted modulation of the gut microbiota to alleviate T1D, T2D and GDM.\",\"PeriodicalId\":12909,\"journal\":{\"name\":\"Gut Microbes\",\"volume\":\"77 1\",\"pages\":\"2401654\"},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gut Microbes\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/19490976.2024.2401654\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GASTROENTEROLOGY & HEPATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gut Microbes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/19490976.2024.2401654","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

糖尿病可根据起源和临床特征细分为几种类型。最常见的糖尿病是 1 型糖尿病(T1D)、2 型糖尿病(T2D)和妊娠糖尿病(GDM)。1 型糖尿病和 2 型糖尿病是影响全球约 5.37 亿成年人的慢性疾病,预计在未来 20 年内,这两个数字还将增加 12%,而妊娠糖尿病根据诊断方法的不同,影响高达 30% 的妊娠期妇女。这些形式的糖尿病有不同的起源:T1D 是一种自身免疫性疾病,而 T2D 通常与某些生活方式有关,但不仅限于此,GDM 则可能是遗传易感性和妊娠因素共同作用的结果。尽管这些形式的糖尿病在致病原因上存在一些差异,但它们的发病有一些共同的标志物。例如,与不平衡的肠道微生物群及其代谢产物相关的肠道屏障损伤和炎症可能是糖尿病发生和发展的共同因素。在此,我们总结了与糖尿病有关的微生物特征,它们与饮食的关系,以及宿主-肠道微生物群-饮食相互作用最终对代谢物谱的影响。此外,我们还总结了与有前景的预防和治疗干预措施有关的最新进展,这些干预措施侧重于有针对性地调节肠道微生物群,以缓解 T1D、T2D 和 GDM。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Gut microbial metabolic signatures in diabetes mellitus and potential preventive and therapeutic applications.
Diabetes mellitus can be subdivided into several categories based on origin and clinical characteristics. The most common forms of diabetes are type 1 (T1D), type 2 diabetes (T2D) and gestational diabetes mellitus (GDM). T1D and T2D are chronic diseases affecting around 537 million adults worldwide and it is projected that these numbers will increase by 12% over the next two decades, while GDM affects up to 30% of women during pregnancy, depending on diagnosis methods. These forms of diabetes have varied origins: T1D is an autoimmune disease, while T2D is commonly associated with, but not limited to, certain lifestyle patterns and GDM can result of a combination of genetic predisposition and pregnancy factors. Despite some pathogenic differences among these forms of diabetes, there are some common markers associated with their development. For instance, gut barrier impairment and inflammation associated with an unbalanced gut microbiota and their metabolites may be common factors in diabetes development and progression. Here, we summarize the microbial signatures that have been linked to diabetes, how they are connected to diet and, ultimately, the impact on metabolite profiles resulting from host-gut microbiota-diet interactions. Additionally, we summarize recent advances relating to promising preventive and therapeutic interventions focusing on the targeted modulation of the gut microbiota to alleviate T1D, T2D and GDM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Gut Microbes
Gut Microbes Medicine-Microbiology (medical)
CiteScore
18.20
自引率
3.30%
发文量
196
审稿时长
10 weeks
期刊介绍: The intestinal microbiota plays a crucial role in human physiology, influencing various aspects of health and disease such as nutrition, obesity, brain function, allergic responses, immunity, inflammatory bowel disease, irritable bowel syndrome, cancer development, cardiac disease, liver disease, and more. Gut Microbes serves as a platform for showcasing and discussing state-of-the-art research related to the microorganisms present in the intestine. The journal emphasizes mechanistic and cause-and-effect studies. Additionally, it has a counterpart, Gut Microbes Reports, which places a greater focus on emerging topics and comparative and incremental studies.
期刊最新文献
Genomic island-encoded LmiA regulates acid resistance and biofilm formation in enterohemorrhagic Escherichia coli O157:H7. Gut microbiota and microbial metabolites for osteoporosis. Non-stochastic reassembly of a metabolically cohesive gut consortium shaped by N-acetyl-lactosamine-enriched fibers. The regulatory effect of chitooligosaccharides on islet inflammation in T2D individuals after islet cell transplantation: the mechanism behind Candida albicans abundance and macrophage polarization. Systematically-designed mixtures outperform single fibers for gut microbiota support.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1